STATE UNIVERSITY OF NEW YORK COLLEGE OF TECHNOLOGY CANTON, NEW YORK

MASTER SYLLABUS

COURSE NUMBER – COURSE NAME ENGS 201 – Statics

Created by: Arthur Hurlbut, Ph.D., P.E. Updated by: Dr.

Lucas Craig

Canino School of Engineering Technology Department: Engineering Science

Semester/Year: Spring 2023

	L.	COURSE NUMBER: ENGS 201				
	M.	<u>CREDIT HOURS</u> : (Hours of Lecture, Laboratory, Recitation, Tutorial, Activity)				
# Lecture H week Other:	lours: 2	# Credit Hours: 3 per week # Lab Hours: per 2 hr				
recitation p	er week					
Course Length: 15 Weeks						
	N.	WRITING INTENSIVE COURSE: Yes \(\square\) No \(\square\)				
O. <u>GER CATEGORY</u> : None: Yes: GER If course satisfies more than one: GER						
	Р.	SEMESTER(S) OFFERED: Fall Spring Fall & Spring				
	Q.	COURSE DESCRIPTION:				
A vector approach to particle equilibrium, equivalent force systems, rigid body equilibrium and analysis of structure. Additional topics include friction, centroids and centers of gravity and moments of inertia.						
	R.	PRE-REOUISITES: None ☐ Yes ☑ If yes, list below:				
PHYS 121,	College	Physics or PHYS 131, University Physics 1 and MATH 123, pre-calculus				
CO-REOU	<u>ISITES</u> :	: None ☑ Yes ☐ If yes, list below:				

TITLE: Statics

K.

S. <u>STUDENT LEARNING OUTCOMES</u>: (see key below)

By the end of this course, the student will be able to:

Course Student Learning Outcome [SLO]	Program Student Learning Outcome [PSLO]	GER [If Applicable]	ISLO & SUBSETS	
Determine the magnitude and direction of forces	a		2-Crit Think ISLO ISLO	CA IA PS Subsets
Calculate equivalent force systems	a		2-Crit Think ISLO ISLO	CA IA PS Subsets
Determine forces necessary for static equilibrium	a		2-Crit Think ISLO ISLO	CA IA PS Subsets
Apply frictional forces to vector analysis	a		2-Crit Think ISLO ISLO	CA IA PS Subsets
Determine the centroid and moments of inertia of various shapes	a		2-Crit Think ISLO ISLO	CA IA PS Subsets
Apply analytical techniques to frames, trusses, and simple machines	a, e		2-Crit Think 5-Ind, Prof, Disc, Know Skills 1-Comm Skills	W CA IA PS
Apply these skills in strength of material analysis.	a, e, k		2-Crit Think 5-Ind, Prof, Disc, Know Skills ISLO	CA IA PS Subsets

KEY	Institutional Student Learning Outcomes [ISLO 1 – 5]			
ISLO#	ISLO & Subsets			
1	Communication Skills Oral [O], Written [W]			
2	Critical Thinking Critical Analysis [CA], Inquiry & Analysis [IA], Problem Solving [PS]			
3	Foundational Skills Information Management [IM], Quantitative Lit,/Reasoning [QTR]			
4	Social Responsibility Ethical Reasoning [ER], Global Learning [GL], Intercultural Knowledge [IK], Teamwork [T]			
5	Industry, Professional, Discipline Specific Knowledge and Skills			

Т.	APPLIE	ED LEARNING COMPONEN	Yes No No				
If YES, select one or more of the following categories:							
		Classroom/Lab Internship Clinical Placement Practicum Service Learning Community Service	Civic Engagement Creative Works/Senior Project Research Entrepreneurship (program, class, project)				
К.	TEXTS:						
Vector Mechanic	s for Engine	ers: Statics, Beer and Johnston,	12 th edition (McGraw Hill)				
R.	REFER	ENCES:					
Engineering Mechanics, Higdon and Stiles, Prentice Hall							
S.	EOUIP	MENT: None ⊠ Needed:					
T.	GRADI	NG METHOD: A-F					
U.	SUGGE	SUGGESTED MEASUREMENT CRITERIA/METHODS:					
•	• Examinations						
•		Homework Comprehensive Final					
V.							
I.	Introductio	n					
	A. What Is Mechanics? B. Fundamental Concepts and Principles C. Units D. Methods of Problem Solution E. Numerical Accuracy						
	II.	Statics of Particles					
	•	 A. Forces in a Plane 1. Forces on a Particle, 2. Vectors 3. Addition of Vectors 4. Resultant of Several 5. Resolutions of a Force 					

6. Rectangular Components of a Force. Unit Vectors7. Addition of Forces by Summing x and y components

- 8. Equilibrium of a Particle
- 9. Newton's First Law of Motion
- 10. Problems Involving the Equilibrium of a Particle. Free-Body

Diagram.

- **B.** Forces in Space
 - 1. Rectangular Components of a Force in Space
 - 2. Force Defined by its Magnitude and Two Points on its Line of Action
 - 3. Addition of Concurrent Forces in Space
 - 4. Equilibrium of a Particle in Space

III. Rigid Bodies

- A. Equivalent Systems of Force
 - 1. Rigid Bodies. External and Internal Forces
 - 2. Principle of Transmissibility. Equivalent Forces
 - 3. Vector Product of Two Vectors
 - 4. Vector Products Expressed in Terms of Rectangular Components
 - 5. Moment of a Force About a Point
 - 6. Varignon's Theorem
 - 7. Rectangular Components of the Moment of a Force
 - 8. Scalar Product of Two Vectors
 - 9. Mixed Triple Product of Three Vectors
 - 10. Moment of a Force about a Given Axis
 - 11. Moment of a Couple
 - 12. Equivalent Couples
 - 13. Couples May Be Represented By Vectors
 - 14. Reduction of a System of Forces to One Force and One Couple
 - 15. Equivalent System of Forces
 - 16. Further Reduction of a System of Forces

IV. Equilibrium of Rigid Bodies

- A. Equilibrium of Rigid Bodies
 - 1. Rigid Body in Equilibrium
 - 2. Free-Body Diagram
- **B.** Equilibrium in Two Dimensions
 - 1. Reactions at Supports and Connections for a Two-Dimensional Structure
 - 2. Equilibrium of a Rigid Body in Two Dimensions
 - 3. Statically Indeterminate Reactions.

Partial Constraints

- 4. Equilibrium of a Two-Force Body
- 5. Equilibrium of a Three-Force Body

C. Equilibrium in Three Dimensions

1. Reactions at Supports and Connections for a Three-Dimensional

V. Distributed Forces: Centroids and Centers of Gravity

A. Areas and Lines

- 1. Center of Gravity of a Two-Dimensional Body
- 2. Centroids of Areas and Lines
- 3. Composite Plates and Wires
- 4. Determination of Centroids by Integration
- 5. Theorems of Pappas-Guldinus

B. Volumes

- 1. Center of Gravity of a Three-Dimensional Body. Centroid of a Volume
- 2. Composite Bodies
- 3. Determination of Centroids of Volumes By Integration

VI. Analysis of Structures

A. Analysis of Structures

1. Internal Forces. Newton's Third Law

B. Trusses

- 1. Definition of a Truss
- 2. Simple Trusses
- 3. Analysis of Trusses by the Methods of Joints

C. Frames and Machines

- 1. Structures Containing Multiforce Members
- 2. Analysis of a Frame
- 3. Frames Which Cease to be Rigid When Detached From Their Supports
- 4. Machines

VII. Friction

A. Friction

- 1. Introduction
- 2. The Laws of Dry Friction. Coefficients of Friction
- 3. Angles of Friction
- 4. Problems Involving Dry Friction
- 5. Wedges
- 6. Square-Threaded Screws
- 7. Journal Bearings. Axle Friction
- 8. Thrust Bearings. Disk Friction
- 9. Wheel Friction. Rolling Resistance
- 10. Belt Friction

VIII. Distributed Forces: Moments of Inertia

- 7. Second Moment, Or moment of Inertia, or an Area
 - 8. Determination of the Moment of Inertia of an Area By Integration
 - 9. Polar Moment of Inertia
 - 10. Radius of Gyration of an Area
 - 11.Parallel-Axis Theorem
 - 12. Moments of Inertia of Composite Areas

IX. Forces in Beams and Cables

- A. Introduction. Internal Forces in Members
- **B.** Beams
 - 1. Various Types of Loading and Support
 - 2. Shear and Bending Moment in a Beam
 - 3. Shear and Bending Moment Diagrams
 - 4. Relations Between Load, Shear, and Bending Moment
- W. <u>LABORATORY OUTLINE</u>: None ⊠ Yes