STATE UNIVERSITY OF NEW YORK COLLEGE OF TECHNOLOGY CANTON, NEW YORK

MASTER SYLLABUS

COURSE NUMBER – COURSE NAME ENGS 203 – Engineering Strengths of Materials

Created by: Arthur Hurlbut, Ph.D., P.E.

Updated by: Dr. Lucas Craig

Canino School of Engineering Technology

Department: Engineering Science

Semester/Year: Spring 2023

R.	TITLE: Engineering Strengths of Materials
S.	COURSE NUMBER: ENGS 203
Т.	<u>CREDIT HOURS</u> : (Hours of Lecture, Laboratory, Recitation, Tutorial, Activity)
	# Credit Hours: 3 # Lecture Hours: 2 per week # Lab Hours: per week Other: 2 hours of
	recitation per week
	Course Length: 15 Weeks
U.	WRITING INTENSIVE COURSE: Yes \(\subseteq \text{No} \subseteq \)
V.	GER CATEGORY: None: Yes: GER If course satisfies more than one: GER
W.	SEMESTER(S) OFFERED: Fall ☐ Spring ☐ Fall & Spring ☐
Х.	COURSE DESCRIPTION:
various introdu	ourse is designed to introduce elementary analysis of deformable bodies subjected to s loading including strength, deformation, and stability analyses. Students will also be used to more advanced concepts to use sound judgment regarding the design of structures imponents.
Υ.	PRE-REOUISITES : None \square Yes \boxtimes If yes, list below:
ENGS	201, or permission of instructor
	CO-REOUISITES : None ∑ Yes □ If yes, list below:

Z. <u>STUDENT LEARNING OUTCOMES</u>: (see key below)

By the end of this course, the student will be able to:

Course Student Learning Outcome [SLO]	Program Student Learning Outcome [PSLO]	<u>GER</u> [If Applicable]	ISLO & SUBSETS	
Demonstrate competence in the elementary analysis of deformable bodies subjected to various loading scenarios	a, k		2-Crit Think ISLO ISLO	CA IA PS Subsets
Determine the allowable strength, deformation, and system stability.	a, k		2-Crit Think ISLO ISLO	CA IA PS Subsets
Calculate the normal and shearing stresses in complex loading schemes	a, k		2-Crit Think 1-Comm Skills ISLO	CA IA PS W
Determine internal shear, bending moment, and deflection in loaded systems.	a, c, e, k		2-Crit Think ISLO ISLO	CA IA PS Subsets
Identify stress and deformation in torsional loading	a, c, k		2-Crit Think 1-Comm Skills ISLO	CA IA PS Subsets
Apply Euler's equations in column loading	a, c, e, k		2-Crit Think ISLO ISLO	CA IA PS Subsets
Apply Mohr's circle in 2D and 3D stress and strain scenarios	a, c, k		2-Crit Think ISLO ISLO	CA PS IA Subsets

KEY	Institutional Student Learning Outcomes [ISLO 1 – 5]
ISLO #	ISLO & Subsets
1	Communication Skills Oral [O], Written [W]
2	Critical Thinking Critical Analysis [CA], Inquiry & Analysis [IA], Problem Solving [PS]
3	Foundational Skills Information Management [IM], Quantitative Lit,/Reasoning [QTR]
4	Social Responsibility Ethical Reasoning [ER], Global Learning [GL], Intercultural Knowledge [IK], Teamwork [T]
5	Industry, Professional, Discipline Specific Knowledge and Skills

- i. Differential Equations of Elastic Curve
- ii. Relation Between Load, Shear, Moment, Slope, Deflection
- iii. Moment Area Method
- iv. Singularity Functions
- v. Statically Indeterminate Cases
- e. General State of Stress and Strain (7.1-6), (8.1-3), (9.1-2, 4)
 - i. Stresses on Inclined Planes
 - ii. Principal Stresses and Strains
 - iii. Mohr's Circle
 - iv. Analysis of Combined Loadings
 - v. Discussion of Advanced Topics: three

dimensional state of stress f. Columns (10.1, 3, 4)

- v. Stability and Buckling
- vi. Support Conditions
- vii. Euler's Formula
- viii. Discussion of Advanced Topics: other column formula, imperfect columns.

HH. <u>LABORATORY OUTLINE</u>: None ⊠ Yes