Student Self-Assessment of Mathematics (SSAM) for Intermediate Algebra

Answer key

1. Find the value of $3 x-4 y$ if $x=-2$ and $y=5$

To find the value, substitute the given values in for x and y
$3 x-4 y \quad$ Substitute (-2) for x and (5) for y
$3(-2)-4(5) \quad$ When you multiply a positive number and a negative number, the answer is always negative
When you multiply 2 positive numbers or 2 negative numbers, the answer is always positive
(-6) - (20) Remember when you subtract numbers, you are really "adding the opposite"
$(-6)+(-20) \quad(-6)$ plus "the opposite of" 20
(-26)
Hint: Visualize a negative sign as backing up. If you back up 6 steps and then back up 20 more steps, you have backed up 26 steps. Caution: This is not quite true as distance is always positive. You cannot really go a negative distance.
2. Last December, the temperature on a certain day rose from (-7) degrees Fahrenheit to 5 degrees above zero Fahrenheit. How much did the temperature rise altogether that day?

If you cannot solve this problem, try drawing a picture. This asks you to "find the distance between the two temperatures". Remember, distance is always positive.
(5) - (-7) Add the opposite
$(5)+(7) \quad$ the opposite of (-7) is $(+7)$
12 degrees Always label your answer if possible
3. Without a calculator calculate: $24 \div \frac{3}{4}-2 \cdot 4$

Order of operations is important. PEMDAS: Parentheses, Exponents, Multiply/Divide (whichever comes first), Add/Subtract (whichever comes first)
$24 \div \frac{3}{4}-2 \cdot 4 \quad$ Division first
$24 \cdot \frac{4}{3}-2 \cdot 4 \quad$ To divide fractions, you multiply by the reciprocal (copy-dot-flip)

24
4. What is the slope and y-intercept of the graph? Graph the equation.

$$
y=2 x+3
$$

The equation is in slope-intercept form $y=m x+b$ where m is the slope and b is the y-intercept Slope $=2 ; y$-intercept $=3$
5. What is the slope of the line that goes through the points $(1,4)$ and $(-1,-2)$?

Hint: plot the points and connect the dots then count "rise" over "run" OR use the formula which is also $\frac{\text { rise }}{\text { run }}=\frac{\Delta y}{\Delta x}$ which stands for $\frac{\text { the change in } y}{\text { the change in } x}$

OR the difference between the y-values divided by the difference between the x -values $\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$ OR subtract the y-values, subtract the x-values then divide y by x
$\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{4-(-2)}{1-(-1)}$ Substitute the x and y values in
$\frac{4+(2)}{1+(1)} \quad$ Add the opposite
$\frac{6}{2}=3 \quad$ The slope is 3
6. A 42 -inch wire is to be cut into two pieces. One piece must be exactly twice as long as the other piece. How long should the shorter piece be?

Hint: Draw a picture.

Let the smallest piece $=x$
Let the bigger piece be twice as long as x (or 2 x)
Together the pieces must be 42 inches.
$X+2 x=42 \quad$ Set up the equation using what you know
$3 x=42 \quad$ Combine like terms
$\frac{3 x}{3}=\frac{42}{3} \quad$ Get x by itself (divide both sides by 3)
$x=14 \mathrm{in} . \quad$ The shorter piece is 14 inches the longer piece is 28

Check: One piece is 14 in . and the other is twice $14=28 \mathrm{in}$. Together $14+28=42$ inches $\sqrt{ }$
7. Solve for $x: 2(x-3)=3 x+5$
$2(x-3)=3 x+5$
$2 x-2(3)=3 x+5$
$2 x-2 x-6=3 x-2 x+5 \quad$ Get variables on same side of equal sign (Subtract $2 x$ from each side)
$-6+(-5)=x+5-5 \quad$ Move constants to same side of equal sign (Add opposite)

$$
(-11)=x
$$

Check: $2(x-3)=3 x+5$

$$
\begin{aligned}
& 2(-11-3)=3(-11)+5 \\
& 2(-11+-3)=-33+5 \\
& -28=-28 \sqrt{ }
\end{aligned}
$$

8. Multiply: $3 x^{2}\left(5 x^{3}-2 x+7\right)$ What is the numerical coefficient of the first term? 15 What is the numerical coefficient of the second term? -6 What is the numerical coefficient of the third term? 21

What is the degree of the first term? 5

What is the degree of the second term? 3
What is the degree of the third term? 2
$3 x^{2}\left(5 x^{3}-2 x+7\right) \quad$ Use the distributive property to remove parentheses
$15 x^{5}-6 x^{3}+21 x^{2} \quad$ You add the exponents when multiplying

A numerical coefficient is the number in front of the variable
The degree is the power or exponent

Hint: If you cannot remember if you are adding or multiplying the exponents, write the whole thing out without exponents.
Ex: $x^{2}=x x$ and $x^{3}=x x x$ so altogether you have $x x \cdot x x x=x x x x x=x^{5}$
9. The length of a rectangular bed is 2 feet less than 2 times its width. Find the length of the bed if the perimeter is 32 feet.

Hint: Draw a picture

Let $w=$ width
Let $I=$ length
L is 2 feet less than 2 times w
$L=2 w-2$

The perimeter is the distance around the outside so $P=w+w+L+L \quad O R \quad P=2 w+2 L$

$$
\begin{array}{ll}
P=w+w+(2 w-2)+(2 w-2) & O R \\
32=w+w+2 w-2+2 w-2 & \\
32=6 w-4 & 32=2(w)+2(2 W-2) \\
32+4=6 w-4+4 & 32=2 w+4 w-4 \\
32=6 w & 32=6 w-4 \\
36 / 6=6 w / 6 & 32+4=6 w-4+4 \\
36 & 36=6 w \\
6=w & 36 / 6=6 w / 6 \\
L=2 w-2 & 6=w
\end{array}
$$

$$
\text { Check: } P=2 w+2 L
$$

$$
P=2(6)+2(10)
$$

$$
P=12+20
$$

$$
P=32 \mathrm{ft} \sqrt{ }
$$

$$
\begin{array}{rlrl}
\mathrm{L} & =2(6)-2 & \mathrm{~L} & =2(6)-2 \\
& =12-2 & & =12-2 \\
& =10 \mathrm{ft} & =10 \mathrm{ft}
\end{array}
$$

10. Simplify the expression: $\frac{1}{2}-\frac{3}{8}+(-5)$ leave your answer in fractional form To add or subtract fractions, you must have a common denominator 8 is common to both denominators so change $1 / 2$ to $8^{\text {ths }}$
$1 / 2=4 / 8$ so
$4 / 8-3 / 8+(-5)$
$1 / 8+(-5) \quad$ change $-5 / 1$ to $8^{\text {ths }}$
$1 / 8+(-40 / 8)$ and then
(-39/8)
11. Solve for $B: A=B C+D$

$$
\begin{array}{ll}
A-D=B C+D-D & \text { We are trying to get B by itself: Subtract the } D \text { from both sides } \\
A-D=B C & \text { Still trying to get } B \text { by itself: divide each side by } C \\
\frac{A-D}{C}=\frac{B C}{C} & \\
\frac{(A-D)}{C}=B &
\end{array}
$$

12. Evaluate the algebraic expression $\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$ when $\mathrm{a}=2, \mathrm{~b}=-3$, and $\mathrm{c}=-2$
$\frac{-(-3) \pm \sqrt{(-3)^{2}-4(2)(-2)}}{2(2)}$ Substitute all values in and follow order of operations $\frac{-(-3) \pm \sqrt{9-(-16)}}{4}$
$\frac{3 \pm \sqrt{9+16}}{4}=\frac{3 \pm \sqrt{25}}{4}=\frac{3 \pm 5}{4}$ now there are 2 answers
$\frac{3+5}{4}=\frac{8}{4}=2$ and $\quad \frac{3-5}{4}=\frac{-2}{4}=-\frac{1}{2}$
13. If 5 gallons of stain are needed to stain 2 wooden decks, how many gallons are needed for 5 decks?

5 gallons = 2 decks
? gallons = 5 decks

This is a proportion problem. Set it up by keeping like quantities in the same places: gallons to gallons and decks to decks

$$
\begin{aligned}
\frac{\text { gallons }}{\text { gallons }} & =\frac{\text { decks }}{\text { decks }} \\
& \frac{5 \text { gallons }}{x \text { gallons }}=\frac{2 \text { decks }}{5 \text { decks }}
\end{aligned}
$$

$$
\frac{5}{x}=\frac{2}{5} \quad \text { Solve by cross multiplying }
$$

$$
5(5)=x(2)
$$

$$
25=2 x
$$

$$
25 / 2=2 x / 2
$$

$$
12.5=x
$$

$121 / 2$ gallons
14. Simplify: $\left(5 x^{3} y^{4}\right)^{2}$
$\left(5 x^{3} y^{4}\right)^{2}$ means $\left(5 x^{3} y^{4}\right)\left(5 x^{3} y^{4}\right)$ now multiply
$5 \cdot 5 \cdot x^{3} \cdot x^{3} \cdot y^{4} \cdot y^{4}$
$25 x^{6} y^{8}$
15. Everything in the hardware store is on sale for a 25% discount. What would a hammer that was originally priced at $\$ 16.95$ cost on sale?

Discount means Less or subtract
Find 25% of the original cost and then subtract to find the sale price
\$16.95 (25\%)
$\$ 16.95(.25)=\$ 4.2375$ or $\$ 4.24$
\$16.95-\$ $4.24=\$ 12.71$

