COURSE OUTLINE

CITA 400 - QUANTITATIVE APPROACHES TO MANAGEMENT

Revised By: Minhua Wang
A. **TITLE:** QUANTITATIVE APPROACHES TO MANAGEMENT

B. **COURSE NUMBER:** CITA 400

C. **CREDIT HOURS:** 3

D. **WRITING INTENSIVE COURSE:** No

E. **COURSE LENGTH:** 15 weeks

F. **SEMESTER(S) OFFERED:** Spring

G. **HOURS OF LECTURE, LABORATORY, RECITATION, TUTORIAL, ACTIVITY:**
   2 lecture hours and 2 laboratory hours per week

H. **CATALOG DESCRIPTION:** This is the study of the decision-making process and how quantitative methods are used to find solutions to business problems. Computer software tools are used to analyze and process data. Opportunities, problems and decisions that confront managers are analyzed and solutions are developed. Topics covered include, but are not limited to: Cost-volume-profit analysis, forecasting, decision theory, linear programming, probability concepts and applications, inventory control, queuing theory, and game theory.

I. **PRE-REQUISITES/CO-REQUISITES:**
   a. Pre-requisite(s): MATH 141 Statistics
   b. Co-requisite(s): none

J. **GOALS (STUDENT LEARNING OUTCOMES):**
   By the end of this course, the student will be able to:

<table>
<thead>
<tr>
<th>Course Objective</th>
<th>Institutional SLO</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Exhibit a review analysis of a business model case study and assess the</td>
<td>1. Communication</td>
</tr>
<tr>
<td>potential effectiveness of the solution methodology</td>
<td>2. Crit. Thinking</td>
</tr>
<tr>
<td></td>
<td>3. Prof. Competence</td>
</tr>
<tr>
<td>b. Recognize a business plan and show a list of potential problems and solution</td>
<td>2. Crit. Thinking</td>
</tr>
<tr>
<td>models</td>
<td>3. Prof. Competence</td>
</tr>
<tr>
<td>c. Apply game theory strategies</td>
<td>2. Crit. Thinking</td>
</tr>
<tr>
<td></td>
<td>3. Prof. Competence</td>
</tr>
<tr>
<td>d. Assemble forecasting models based on hypothetical market trends</td>
<td>2. Crit. Thinking</td>
</tr>
<tr>
<td></td>
<td>3. Prof. Competence</td>
</tr>
<tr>
<td>e. Use decision theory models to predict future market trends and inventory</td>
<td>2. Crit. Thinking</td>
</tr>
<tr>
<td>requirements</td>
<td>3. Prof. Competence</td>
</tr>
<tr>
<td>f. Deduce the optimum solution or simulation tool based on presented data</td>
<td>2. Crit. Thinking</td>
</tr>
<tr>
<td></td>
<td>3. Prof. Competence</td>
</tr>
</tbody>
</table>

K. **TEXTS:**

L. **REFERENCES:** N/A
M. **EQUIPMENT:** computer classroom

N. **GRADING METHOD:** A-F

O. **MEASUREMENT CRITERIA/METHODS:**
   - Exams
   - Quizzes
   - Participation

P. **DETAILED COURSE OUTLINE:**

I. Introduction to Quantitative Analysis
   - A. The Quantitative Analysis Approach
   - B. Develop a Quantitative Analysis Model
   - C. The Role of Computers in the Quantitative Analysis Approach
   - D. Possible Problems in the Quantitative Analysis Approach

II. Probability Concepts and Applications
   - A. Fundamental Concepts
   - B. Mutually Exclusive and Collectively Exhaustive Events
   - C. Statistically Independent Events
   - D. Revising Probabilities with Bayes Theorem
   - E. Game Theory

III. Decision Models and Decision Trees
   - A. The Six Steps in Decision Making
   - B. Types of Decision-Making Environments
   - C. Decision Making under Uncertainty
   - D. Decision Trees
   - E. Utility Theory

IV. Regression Models
   - A. Scatter Diagrams
   - B. Simple Linear Regression
   - C. Measuring the Fit of the Regression Model
   - D. Cautions and Pitfalls in Regression Analysis

V. Forecasting
   - A. Types of Forecasts
   - B. Scatter Diagrams and Time Series
   - C. Measures of Forecast Accuracy
   - D. Using the Computer to Forecast

VI. Inventory Control Models
   - A. Importance of Inventory Control
   - B. Inventory Decisions
   - C. Economic Order Quantity: Determining How Much to Order
   - D. Reorder Point: Determining When to Order

VII. Linear Programming Models: Graphical Methods
A. Requirements of a Linear Programming Problem
B. Formulating LP Problems
C. Graphical Solution to a LP Problem
D. Sensitivity Analysis

VIII. Transportation and Assignment Models
A. Setting Up a Transportation Problem
B. Developing an Initial Solution: Northwest Corner Rule
C. Stepping-Stone Method: Finding a Least-Cost Solution
D. Unbalanced Transportation Problems
E. Degeneracy in Transportation Problems
F. More Than One Optimal Solution
G. Approach of the Assignment Model
H. Unbalanced Assignment Problems
I. Maximization Assignment Problems

X. Network Models
A. Minimal-Spanning Tree Technique
B. Shortest-Route Technique

XI. Project Management
A. Introduction
B. PERT
C. Critical Path Method

Q. LABORATORY OUTLINE:

I. Probability Concepts and Applications Lab
II. Decision Models and Decision Trees Lab
III. Regression Models Lab
IV. Forecasting Lab
V. Inventory Control Models Lab
VI. Linear Programming Models Lab
VII. Transportation and Assignment Models Lab
VIII. Network Models Lab
IX. Project Management Lab