A. **TITLE:** Electric Circuits

B. **COURSE NUMBER:** ENGS 263

C. **CREDIT HOURS:** (Hours of Lecture, Laboratory, Recitation, Tutorial, Activity)

- # Credit Hours: 3
- # Lecture Hours: 3 per week
- # Lab Hours: per week
- Other: per week

Course Length: 15 Weeks

D. **WRITING INTENSIVE COURSE:** Yes ☑ No ☐

E. **GER CATEGORY:** None: ☐ Yes: GER

If course satisfies more than one: GER

F. **SEMESTER(S) OFFERED:** Fall ☐ Spring ☑ Fall & Spring ☐

G. **COURSE DESCRIPTION:**

Electric circuit theory is introduced with emphasis on mathematical definitions of circuit elements. Network analysis techniques are presented within the framework of direct and alternating current theory. Transient forced and complete responses of circuits involving resistance, inductance, and capacitance are analyzed via differential and integral calculus. Circuit Design using Operational Amplifiers

H. **PRE-REQUISITES:** None ☐ Yes ☑ If yes, list below:

Calculus II (MATH 162), University Physics II (PHYS 132), or permission of instructor

CO-REQUISITES: None ☐ Yes ☑ If yes, list below:
I. STUDENT LEARNING OUTCOMES: *(see key below)*

By the end of this course, the student will be able to:

<table>
<thead>
<tr>
<th>Course Student Learning Outcome [SLO]</th>
<th>Program Student Learning Outcome [PSLO]</th>
<th>GER [If Applicable]</th>
<th>ISLO & SUBSETS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Understand the basic electric theory w/emphasis on mathematical definitions of circuit elements</td>
<td>Provide students with the requisite mathematical skills to successfully pursue their engineering education</td>
<td>3-Found Skills ISLO ISLO</td>
<td>Subsets Subsets Subsets Subsets</td>
</tr>
<tr>
<td>Use different techniques to analyze electrical circuits</td>
<td>Prepare students to utilize modern computational tools for engineering programming, analysis, and design</td>
<td>2-Crit Think 3-Found Skills ISLO</td>
<td>PS Subsets Subsets Subsets</td>
</tr>
<tr>
<td>Design electrical circuits using Operational Amplifier</td>
<td>Prepare students to utilize modern computational tools for engineering programming, analysis, and design</td>
<td>5-Ind, Prof, Disc, Know Skills ISLO ISLO</td>
<td>Subsets Subsets Subsets Subsets</td>
</tr>
<tr>
<td>Understand transient responses of circuits using differential equations</td>
<td>Prepare students to utilize modern computational tools for engineering programming, analysis, and design</td>
<td>3-Found Skills ISLO ISLO</td>
<td>ISLO ISLO ISLO</td>
</tr>
</tbody>
</table>

KEY
Institutional Student Learning Outcomes [ISLO 1 – 5]

<table>
<thead>
<tr>
<th>ISLO #</th>
<th>ISLO & Subsets</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Communication Skills Oral [O], Written [W]</td>
</tr>
<tr>
<td>2</td>
<td>Critical Thinking Critical Analysis [CA], Inquiry & Analysis [IA], Problem Solving [PS]</td>
</tr>
<tr>
<td>3</td>
<td>Foundational Skills Information Management [IM], Quantitative Lit./Reasoning [QTR]</td>
</tr>
<tr>
<td>4</td>
<td>Social Responsibility Ethical Reasoning [ER], Global Learning [GL], Intercultural Knowledge [IK], Teamwork [T]</td>
</tr>
<tr>
<td>5</td>
<td>Industry, Professional, Discipline Specific Knowledge and Skills</td>
</tr>
</tbody>
</table>

Include program objectives if applicable. Please consult with Program Coordinator.
J. **APPLIED LEARNING COMPONENT:** Yes ☐ No ☒

If YES, select one or more of the following categories:

- [] Classroom/Lab
- [] Internship
- [] Clinical Placement
- [] Practicum
- [] Service Learning
- [] Community Service
- [] Civic Engagement
- [] Creative Works/Senior Project
- [] Research
- [] Entrepreneurship (program, class, project)

K. **TEXTS:**

L. **REFERENCES:**

Many online references. They will be posted as needed

M. **EQUIPMENT:** None ☒ Needed:

N. **GRADING METHOD:** A - F

O. **SUGGESTED MEASUREMENT CRITERIA/METHODS:**

- Participation: 5%
- Quiz/Homework: 25%
- Tests: 45%
- Final exam: 25%
P. DETAILED COURSE OUTLINE:

I. Basic Concepts

 A. System of Units
 B. Basic Quantities
 C. Independent Sources
 1. Voltage Sources
 2. Current Sources

II. Resistive Circuits

 A. Ohms Law
 B. Kirchhoff’s Laws
 1. Voltage Law
 2. Current Law

 C. Single-Loop Circuits
 D. Single-Node Circuits
 E. Series-Parallel Circuits
 F. Dependent Sources

III. Analysis Methods

 A. Nodal Analysis
 B. Mesh/Loop Analysis

IV. Circuit Analysis Theorems

 A. Linearity
 B. Source Transformation
 C. Thevenin's Theorem
 D. Norton's Theorem
 E. Superposition

V. Operational Amplifier

 A. Ideal OpAmp
 B. Inverting Amplifier circuits
 C. Non-Inverting Amplifier Circuits
 D. Summing Amplifier Circuits
 E. Difference Amplifier Circuits
 F. Comparator Circuits

VI. First-order Circuits

 A. RL natural response
 B. RC natural response
 C. RL step (forced) response
 D. RC step (forced) response
VII. Second-order Circuits

A. Series RLC natural response
B. Parallel RLC natural response
C. Series RLC step response
D. Parallel RLC step response

VIII. Sinusoidal Steady-State Analysis

A. Sinusoidal Source
B. Sinusoidal Response
C. The Phasor
D. Circuit Theorems in the Frequency Domain
E. Circuit Simplifications
F. Instantaneous, True, and Reactive Power
G. Complex Power and Power Calculations

Q. LABORATORY OUTLINE: None ☒ Yes ☐