COURSE OUTLINE

HEFI 402 – Strength and Conditioning

Prepared By: Janet L. Parcell Mitchell, PT, DPT, ATC, CSCS
Deb Molnar
HEFI 402 – Strength and Conditioning

A. **TITLE**: Strength and Conditioning

B. **COURSE NUMBER**: HEFI 402

C. **CREDIT HOURS**: 3

D. **WRITING INTENSIVE COURSE**: No

E. **COURSE LENGTH**: 15 weeks

F. **SEMESTER(S) OFFERED**: Fall

G. **HOURS OF LECTURE, LABORATORY, RECITATION, TUTORIAL, ACTIVITY**: 2 hours of lecture 2 hours of lab

H. **CATALOG DESCRIPTION**: This course serves to provide students with advanced knowledge and skills to design and implement safe and effective strength and conditioning programs specifically for an athletic population. An in-depth study of resistance training is included, along with specialized topics such as bioenergetics, endocrine response to resistance exercise, and use of performance-enhancing substances. Aerobic and anaerobic exercise prescription for the athlete is discussed in detail. This course provides specific preparation for the student who wants to pursue certification as a Strength and Conditioning Specialist (CSCS) through the NSCA.

I. **PRE-REQUISITES/CO-COURSES**: Pre-requisite: HEFI 303

J. **GOALS (STUDENT LEARNING OUTCOMES)**: By the end of this course, the student will be able to:

<table>
<thead>
<tr>
<th>Course Objective</th>
<th>Institutional SLO</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Recommend ways to minimize injury risk during resistance training.</td>
<td>3. Prof. Competence</td>
</tr>
<tr>
<td>b. Analyze sports movements and recommend sport specific exercise prescription.</td>
<td>2. Crit. Thinking</td>
</tr>
<tr>
<td>c. Develop training programs that demonstrate understanding of metabolic and endocrine responses to exercise.</td>
<td>2. Crit. Thinking</td>
</tr>
<tr>
<td>d. Design appropriate anaerobic and aerobic training programs that optimize athletic performance.</td>
<td>2. Crit. Thinking</td>
</tr>
<tr>
<td>e. Evaluate validity and reliability of various tests used to assess athletic performance.</td>
<td>2. Crit. Thinking</td>
</tr>
<tr>
<td>f. Select and administer appropriate tests to help establish training program objectives.</td>
<td>2. Crit. Thinking</td>
</tr>
</tbody>
</table>

L. **EQUIPMENT:** Technology enhanced classroom

N. **GRADING METHOD:** A – F.

O. **MEASUREMENT CRITERIA/METHODS:**
 - Quizzes
 - Written homework assignments
 - Lab skills
 - Strength and Conditioning program development project

P. **DETAILED COURSE OUTLINE:**

I. **Exercise Science Principles**
 - A. Bioemechanics of Resistance exercise
 - B. Tissue Adaptation to Physical Activity

II. **Bioenergetics**
 - A. Energy systems
 - B. Fatigue and Recovery
 - C. Metabolic specificity of training

III. **Endocrine Response to Resistance Exercise**
 - A. Synthesis, Storage, Secretion of Hormones
 - B. Resistance exercise and hormonal increases
 - C. Adaptations in the Endocrine System
 - D. Anabolic and Adrenal Hormone Response to Exercise

IV. **Performance-Enhancing Substances**
 - A. Types of Performance-enhancing substances
 - B. Anabolic steroids
 - C. Drug testing
 - D. Dietary supplements

IV. **Testing and Evaluation**
 - A. Validity and Reliability
 - B. Selection and administration
 - C. Parameters of Athletic performance
 - D. Specific testing protocols

V. **Anaerobic Exercise Prescription**
 - A. Sport-specific resistance training
 - B. Plyometric training
 - C. Speed and Agility training

VI. **Aerobic Exercise Prescription for the Athlete**
 - A. Sport-specific aerobic endurance training
 - B. Special Issues in aerobic training
 - C. Periodization

VII. **Facility Management**
 - A. Facility layout and scheduling
 - B. Facility policies and procedures
 - C. Facility maintenance and risk management

Q. **LABORATORY OUTLINE:**

I. Bodyweight Exercises
II. Kettlebell Exercises
III. Dumbbell Exercises
IV. Medicine Ball Exercises
V. TRX Exercises
VI. Barbell Exercises
VII. Battling Ropes
VIII. Other Non-Traditional Exercises
 A. Tires
 B. Sandbags
 C. Mace