STATE UNIVERSITY OF NEW YORK
COLLEGE OF TECHNOLOGY
CANTON, NEW YORK

COURSE OUTLINE

MECH 128– Electromechanical Technology

Prepared By: Stephen E. Frempong
Revised By: Daniel Miller (April 2012)
Updated By: Dr. Lucas Craig (May 2015)
A. **TITLE:** Electromechanical Technology

B. **COURSE NUMBER:** MECH 128

C. **CREDIT HOURS:** 3

D. **WRITING INTENSIVE COURSE:** No

E. **COURSE LENGTH:** 15 weeks

F. **SEMESTER(S) OFFERED:** Spring

G. **HOURS OF LECTURE, LABORATORY, RECITATION, TUTORIAL, ACTIVITY:**
 2 Hours of lecture and 2 Hours of lab per week

H. **CATALOG DESCRIPTION:**
 This course provides the knowledge base needed to understand the principles, concepts, and applications of electro-mechanics. It presents problem-solving techniques that are critical for troubleshooting situations. Topics covered include: Nature of motion, simple and compound machines, torque, power transmission, motion devices, electric circuits, electromagnetic circuits and devices, and maintenance procedure for electrical and mechanical machines.

I. **PRE-REQUISITES/CO-REQUISITES:**
 a. Pre-requisite(s): MATH 123: Pre-Calculus and PHYS 121/125 (Physics I and lab)
 b. Co-requisite(s): None

J. **GOALS (STUDENT LEARNING OUTCOMES):**
 By the end of this course, the student will be able to:

<table>
<thead>
<tr>
<th>Course Objective</th>
<th>Institutional SLO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Explain the interrelationship of electrical and mechanical machine elements and their underlying principles of operation</td>
<td>1. Communication</td>
</tr>
<tr>
<td>2. Discuss the use of mechanical coupling, gearing, belt drives, chain drives, bearings, and rigging</td>
<td>1. Communication</td>
</tr>
<tr>
<td>3. Differentiate between electrical, mechanical and pneumatic devices</td>
<td>2. Critical Thinking</td>
</tr>
<tr>
<td>4. Develop basic mechanical and electrical skills</td>
<td>3. Professional Competence</td>
</tr>
<tr>
<td>5. Work and share responsibilities on a team project</td>
<td>4. Inter-Intrapersonal Skills</td>
</tr>
<tr>
<td>6. Perform basic calculations</td>
<td>2. Critical Thinking</td>
</tr>
<tr>
<td>7. Explain the importance of mechanical oscillation and mechanical feedback systems</td>
<td>1. Communication</td>
</tr>
</tbody>
</table>

K. **TEXTS:** None

L. **REFERENCES:** None

M. **EQUIPMENT:** Electrical and Mechanical laboratories will be used.
N. **GRADING METHOD:** A-F

O. **MEASUREMENT CRITERIA/METHODS:**
 - Exams
 - Quizzes
 - Homework
 - Participation

P. **DETAILED COURSE OUTLINE:**
 1. Basic Electrical Circuits
 - Electrical Conductors and Insulators
 - Resistors and Capacitors
 - Current, Voltage, Resistance, and Power
 - Series, Parallel, and Series Parallel Circuits
 - DC Motor Operation
 - Stepper Motors
 - Transducers and Sensors
 2. Data acquisition (DAQ)
 - Components for data acquisition
 - Software for data acquisition
 3. Simple machines
 - Lever
 - Wheel + axle
 - Pulley
 - Inclined plane + wedge
 - Screw
 4. Gearing, Belt, and Chain Drives
 - Gear Ratio
 - Torque Ratio
 - Efficiency
 - Gear Trains
 - The V-Belt and replacement procedure
 - Synchronous Belt Drives
 - Timing Belt Pulleys
 5. Rotation, Linear, and Intermittent-Motion Devices
 - Coupling, Universal Joints, Clutches, Moment of Inertia
 - Rack and Pinion
 - Cam and Follower
 - Geneva Drive Mechanism

Q. **LABORATORY OUTLINE:**
 I. Lego Mind-Storms
 II. Data acquisition
 III. Testing of sensors (e.g., temperature, pressure, strain gauges, force transducers)
 IV. Simple machines
 V. Gears
 VI. Final Project