STATE UNIVERSITY OF NEW YORK! COLLEGE OF TECHNOLOGY! CANTON, NEW YORK!

MASTER SYLLABUS

COURSE NUMBER – COURSE NAME PHYS 136 – UNIVERSITY PHYSICS LABORATORY II

Created by: Dr. Feng Hong

Updated by: Dr. Lawretta Ononye

Canino School of Engineering Technology!

Department: Physics!

Semester/Year: Fall 2018!

A.	<u>TITLE</u> : University Physics Laboratory II
В.	COURSE NUMBER: PHYS 136
С.	<u>CREDIT HOURS</u> : (Hours of Lecture, Laboratory, Recitation, Tutorial, Activity)
	# Credit Hours: 1! # Lecture Hours: 1 per week! # Lab Hours: per week! Other: per week
	Course Length: 15 Weeks
D.	WRITING INTENSIVE COURSE: Yes No
Е.	GER CATEGORY: None: Yes: GER 2 Natural Sciences! If course satisfies more than one: GER!
F.	SEMESTER(S) OFFERED: Fall ☐ Spring ☐ Fall & Spring ☐
G.	COURSE DESCRIPTION:
	a laboratory course to accompany University Physics II (PHYS132). ments examine electricity, circuits, resistivity, capacitance and magnitism.
Н.	PRE-REQUISITES: None ☐ Yes ☑ If yes, list below:
PHYS	135, University Physics Laboratory I or Permission of instructor
	<u>CO-REQUISITES</u> : None ☐ Yes ⊠ If yes, list below:
PHYS	132, University Physics II or permission of instructor

I. <u>STUDENT LEARNING OUTCOMES</u>: (see key below)

By the end of this course, the student will be able to:

Course Student Learning Outcome [SLO]	Program Student Learning Outcome [PSLO]	<u>GER</u> [If Applicable]	<u>ISLO & SUBSETS</u>	
a. Understanding of the methods scientists use to explore natural phenomena, including observation, hypothesis development, measurement, and data collection, experimentation, evaluation of evidence, and employment of mathematical analysis			2-Crit Think 4-Soc Respons	W CA Γ Subsets
b. Application of scientific data, concepts, and models in physics			2-Crit Think 4-Soc Respons	W CA Γ Subsets
c. Use computer assisted data collection and analysis			2-Crit Think 4-Soc Respons	W CA Γ Subsets
			ISLO ISLO	Subsets Subsets Subsets Subsets
			ISLO ISLO	Subsets Subsets Subsets Subsets

KEY	Institutional Student Learning Outcomes [ISLO 1 – 5]
ISLO #	ISLO & Subsets
1	Communication Skills Oral [O], Written [W]
2	Critical Thinking Critical Analysis [CA], Inquiry & Analysis [IA], Problem Solving [PS]
3	Foundational Skills Information Management [IM], Quantitative Lit,/Reasoning [QTR]
4	Social Responsibility Ethical Reasoning [ER], Global Learning [GL], Intercultural Knowledge [IK], Teamwork [T]
5	Industry, Professional, Discipline Specific Knowledge and Skills

^{*}Include program objectives if applicable. Please consult with Program Coordinator!

J. !	APPLIED LEARNING COMPONENT: Yes No			
	If YES, select one or more of the following categories: !			
K. !	<u>TEXTS</u> :			
N/A				
L.!	REFERENCES:			
Raymond A. Serway and John W. Jewett (2011). Physics for Scientists and Engineers,9th Edition. Belmont, CA: Brooks/Cole.				
M. !	EQUIPMENT: None Needed: Existing physics laboratory equipment will be used.			
N. !	GRADING METHOD: A-F			
O.!	SUGGESTED MEASUREMENT CRITERIA/METHODS:			
• Lab reports • Projects • Participation				
Р.	<u>DETAILED COURSE OUTLINE</u> :			
N/A				
Q.	<u>LABORATORY OUTLINE</u> : None ☐ Yes ⊠			
1. !	Ohm's Law The current voltage characteristic will be obtained for different kinds of devices.			
2. !	Resistivity The geometric and physical properties of electrical conduction will be found by exploring the IV properties of different conducting wires.			
3.!	Thermal coefficient of resistivity The resistance of conductors and semi-conducting diodes as a function of temperature will be compared to predictions of the band theory.			
4. !	Oscilloscope Oscilloscopes will be used to measure voltage, frequency, half peak width and phase			

shifts.

5.! Terminal voltage

The IV power curve will be obtained for the output of a power source with a large internal resistance.

6. ! Potentiometer

The characteristics of a voltage divider will be examined. The divider will then be converted into a potentiometer to measure the electric potential of a fruit cell.

7.! Capacitance

Time constants will be used to measure the capacitance of series and parallel connected capacitors.

8.! Self Inductance (2 week lab)

The self inductance of a coil will be determined using an LC circuit. The result will be compared to theoretical calculations.

9. RLC circuits

Impedance of an RLC circuit is examined as a function of frequency. Resonant conditions are identified.

10. Optics

Reflection & Refraction Lenses and Diffraction