STATE UNIVERSITY OF NEW YORK COLLEGE OF TECHNOLOGY CANTON, NEW YORK

MASTER SYLLABUS

COURSE NUMBER – COURSE NAME ELEC 172 - ELECTRICAL CONSTRUCTION & MAINTENANCE II (Certificate Program)

Created by: Michael Spearance

Updated by: November 20, 2018

Canino School of Engineering Technology

Department: ENVIRONMENTAL, CIVIL AND CONSTRUCTION TECHNOLOGY

Semester/Year: SPRING 2019

A. <u>TITLE</u>: Electrical Maintenance & Construction II

B. <u>COURSE NUMBER</u>: ELEC 172

C. <u>CREDIT HOURS</u>: (Hours of Lecture, Laboratory, Recitation, Tutorial, Activity)

Credit Hours: 7
Lecture Hours: 3 per week
Lab Hours: 8 per week
Other: per week

Course Length: 15 Weeks

D. <u>WRITING INTENSIVE COURSE</u>: Yes \square No \boxtimes

E. <u>GER CATEGORY</u>: None: Yes: GER *If course satisfies more than one*: GER

F. <u>SEMESTER(S) OFFERED</u>: Fall Spring Fall & Spring

G. <u>COURSE DESCRIPTION</u>:

Continuation of Electrical Construction and Maintenance I. Includes additional instruction in basic AC system theory, three phase circuits, motors - motor control, transformer theory - connections. Laboratory projects include diagnosis of electrical equipment, motors - motor starters, transformer connections and raceway installations for Commercial Electrical applications. Certificate/ AAS Elective Credit

H. <u>PRE-REQUISITES</u>: None Yes X If yes, list below:

ELEC 171, ELEC 173

<u>CO-REQUISITES</u>: None Yes If yes, list below:

MATH 101 or MATH 106, SOET 101

I. <u>STUDENT LEARNING OUTCOMES</u>: (see key below)

By the end of this course, the student will be able to:

Course Student Learning Outcome [SLO]	<u>Program Student Learning</u> <u>Outcome</u> [PSLO]	<u>GER</u> [If Applicable]	<u>ISLO & SUBSETS</u>	
a. Explain current flow for a given circuit			2-Crit Think 3-Found Skills ISLO	Subsets Subsets Subsets Subsets
b. Design and analyze motor circuit sizing			2-Crit Think 3-Found Skills ISLO	Subsets Subsets Subsets Subsets
c. Design and analyze transformer circuits			1-Comm Skills 3-Found Skills ISLO	Subsets Subsets Subsets Subsets
d. Design and analyze multi-phase circuits			2-Crit Think 3-Found Skills ISLO	Subsets Subsets Subsets Subsets
			ISLO ISLO ISLO	Subsets Subsets Subsets Subsets
			ISLO ISLO ISLO	Subsets Subsets Subsets Subsets

	ISLO ISLO ISLO	Subsets Subsets Subsets Subsets
	ISLO ISLO ISLO	Subsets Subsets Subsets Subsets
	ISLO ISLO ISLO	Subsets Subsets Subsets Subsets
	ISLO ISLO ISLO	Subsets Subsets Subsets Subsets

KEY	Institutional Student Learning Outcomes [ISLO 1 – 5]		
ISLO	ISLO & Subsets		
#			
1	Communication Skills		
	Oral [O], Written [W]		
2	Critical Thinking		
	Critical Analysis [CA], Inquiry & Analysis [IA], Problem		
	Solving [PS]		
3	Foundational Skills		
	Information Management [IM], Quantitative Lit,/Reasoning		
	[QTR]		
4	Social Responsibility		
	Ethical Reasoning [ER], Global Learning [GL],		
	Intercultural Knowledge [IK], Teamwork [T]		
5	Industry, Professional, Discipline Specific Knowledge and		
	Skills		

*Include program objectives if applicable. Please consult with Program Coordinator

J. <u>APPLIED LEARNING COMPONENT:</u>

Yes 🛛 No 🗌

If YES, select one or more of the following categories:

Classroom/Lab
Internship
Clinical Placement
Practicum
Service Learning
Community Service
Classroom/Lab
Civic Engagement
Creative Works/Senior Project
Research
Entrepreneurship
(program, class, project)

K. <u>TEXTS</u>:

Hermon, Stephen. Delmar's Standard Textbook of Electricity 6th Edition. Clifton Park: Cengage.

L. <u>REFERENCES</u>:

2017 National Electric Code Book

M. <u>EQUIPMENT</u>: None Needed: supplied by college motors, transformers, conduit benders, motor starters and electrical conductors

N. **<u>GRADING METHOD</u>**: A-F

0. <u>SUGGESTED MEASUREMENT CRITERIA/METHODS</u>:

- Exams
- Quizzes
- Papers
- Attendance

P. <u>DETAILED COURSE OUTLINE</u>:

- I. Alternating Current Principles
- A. A-C Power
- 1) Three Phase
- 2) Single Phase

II. Polyphase Circuits

- A. Introduction to Delta Connections
- 1) How coils are connected in Delta
- 2) Meaning of the term Delta
- B. Current relationships in a Delta Connection
- C. KVA Capacity of a Delta Connection
- D. Closed Delta Transformer Bank

- 1) Connection of primary & secondary windings
- E. Single Phase Transformers Connected in WYE
- 1) How coils are connected in wye
- 2) Meaning of term wye
- F. Wye-Wye Connected Transformer Banks
- G. Delta-Wye Connected Transformer Banks
- III. Transformers
- A. Applications of Transformers
- **B.** Construction Of Transformers
- C. Elementary Principles of Transformers
- **D.** Polarity
- E. Single Phase Connections
- F. Transformer Cooling
- **IV.** Single Phase Motors
- A. Construction of Split Phase Motor
- **B.** Principles of Operation of Split Phase Motor
- C. Principles of Operation of Capacitor Start Motor
- V. Three Phase Motors
- A. Construction of Motor
- **B.** Principle of Operation
- C. Rotor Field
- **D.** Stator Windings
- E. Starting Current
- F. Reversing Rotation
- VI. A-C Motor Controls
- A. Starting Squirrel Cage Motors
- B. Across the Line Magnetic Motor Starters
- C. Motor Reversing
- VII. System and Equipment Grounding
- A. Grounding Defined
- B. Definition of Voltage to Ground
- C. Identification of Grounded Conductors
- D. Methods of Equipment Grounding
- VIII. Conductors and Raceways
- A. Conductor insulation
- **B.** Effects of Heat on Conductors
- C. Conductor Material
- **D. Overcurrent Protection**
- E. Fuses and Circuit Breakers
- F. Voltage Drop Calculations
- G. Function of Raceways
- H. Types of Raceways
 - VIIII. Lighting
- A. Incandescent
- B. LED

- C. Vapor Lamp
- D. Fluorescent Lamp
- E. Illumination
- IX. Commercial Electrical System
- A. Generating Station to Substation
- **B.** Distribution of Power
- C. Service Entrance Equipment
- D. Feeders and Sub feeders
- E. Branch Circuits

Q. <u>LABORATORY OUTLINE</u>: None Yes

- 1) Drill, Tap and Caliper Measurements
- 2) Metal Clad Cable #1
- 3) Metal Clad Cable #2
- 4) Metal Clad Cable #3
- 5) Electric Water Heater
- 6) 120 Volt Relay Circuit
- 7) Water Tower Control Circuit
- 8) Single Phase Transformers Step Up- Step Down
- 9) Single Phase Transformer Three Wire Secondary
- 10) EMT Raceway cutting, Reaming
- 11) EMT Raceway Bending #1
- 12) EMT Raceway Bending #2
- 13) EMT Raceway Bending #3
- 14) Three Phase Transformers Delta to Wye
- 15) Three Phase Transformers Wye to Delta
- 16) Three Phase Transformers Wye to Wye
- 17) Three Phase Transformers Delta to Delta
- **18)** Three Phase Motor Testing
- **19)** Three Phase Load Testing
- 20) Photo Eye Control 120 Volt Load
- 21) Photo Eye Control 208 Volt Load
- 22) 120 Volt Holding Circuit
- 23) Motor Starter Two Wire Control
- 24) Motor Starter Three Wire Control