STATE UNIVERSITY OF NEW YORK COLLEGE OF TECHNOLOGY CANTON, NEW YORK

COURSE OUTLINE

ACHP 306 - ENERGY SYSTEMS TECHNOLOGY

Prepared By: Arthur Hurlbut, Ph.D., P.E. Updated By: Michael J. Newtown. P.E.

> CANINO SCHOOL OF ENGINEERING TECHNOLOGY MECHANICAL & ENERGY TECHNOLOGY MAY 2015

- A. <u>TITLE:</u> Energy Systems Technology
- B. <u>COURSE NUMBER:</u> ACHP 306
- C. <u>CREDIT HOURS:</u> 3
- D. <u>WRITING INTENSIVE COURSE:</u> NA
- E. <u>COURSE LENGTH:</u> 15
- F. <u>SEMESTER(S) OFFERED:</u> Fall or Spring
- G. <u>HOURS OF LECTURE, LABORATORY, RECITATION, TUTORIAL, ACTIVITY:</u> 2 one hour lecture and 1 two hour recitation
- H. <u>CATALOGUE DESCRIPTION:</u> The student will develop skills utilized in HVAC systems design, from the basic principles of heat transfer through detailed sizing and selection of various HVAC systems.
- I. <u>PRE-REQUISITES/CO-COURSES:</u> Junior level status
- J. <u>OBJECTIVES:</u> Upon completion of this course, students will be able to:

Course Objective	Institutional SLO
a. Analyze and design the basic HVAC systems in a building	2. Crit. Thinking
	3. Prof. Competence
b. Calculate heating, air conditioning, and ventilation loads for	2. Crit. Thinking
buildings	3. Prof. Competence
c. Utilize psychometrics in an air conditioning system design	1. Communication
	2. Crit. Thinking
	3. Prof. Competence
d. Determine the fluid flow conditions necessary to HVAC	2. Crit. Thinking
systems	3. Prof. Competence

- K. <u>TEXTS:</u> ASHRAE, <u>Principles of Heating, Ventilating, and Air Conditioning</u>, 7th edition, 2013, Atlanta, GA
- L. <u>REFERENCES:</u>

ASHRAE, <u>Handbooks of Fundamentals</u>, Atlanta, GA ASHRAE, <u>Handbook of Refrigeration</u>, Atlanta, GA ASHRAE, <u>Handbook of HVAC Applications</u>, Atlanta, GA ASHRAE, <u>Handbook of HVAC Systems and Equipment</u>, Atlanta, GA

- M. <u>EQUIPMENT</u>:
- N. <u>GRADING METHOD</u>: A-F
- O. EVALUATION CRITERIA/METHODS: Exams, homework, projects

P. <u>DETAILED TOPICAL OUTLINE:</u>

- I. Heating Loads
 - A. Heat Transfer
 - B. Overall thermal resistance
 - C. Overall heat transfer coefficient
 - D. Heat transfer losses
 - E. Infiltration and ventilation loads
 - F. Design conditions
 - G. Building heat loads

II. Furnaces and Boilers

- A. Warm air furnaces
- B. Water boilers
- C. Steam boilers
- D. Controls
- E. Energy use and efficiency
- III. Hydronic Piping Systems and Terminal Units
 - A. Piping arrangements series, parallel, combinations
 - B. Three and four pipe systems
 - C. Terminal units fintube, radiators, convectors, radiant panels, unit heaters, fan oil units, induction units
 - D. System water temperatures and flow rates
- IV. Cooling Load Calculations
 - A. Cooling load calculation procedure
 - B. Conduction loads
 - C. Solar radiation loads
 - D. Design conditions
 - E. Lighting, equipment, and people loads
 - F. Ventilation and infiltration loads
 - G. Total Building Loads
- V. Psychrometrics
 - A. Properties of air
 - B. The Psychrometric chart
 - C. The air conditioning process on the chart
 - 1. Sensible heat
 - 2. Latent heat
 - D. Coil Process
 - E. Sensible Heat Ratio
- VI. Fluid Flow in Piping and Ducts
 - A. The continuity equation
 - B. The flow energy equation
 - C. Pressure losses in closed and open systems
 - D. Total, static and velocity pressures
 - E. Use of "Trane Ductulator"
 - F. Use of "Bell & Gossett System Syzer"

- G. Duct design methods equal friction and static regain methods
- VII. Fans and Air Distribution Devices
 - A. Fan types
 - B. Fan performance curves
 - C. Fan rating and selection
 - D. Fan laws
 - E. Air distribution devices
 - F. Sound Control
- VIII. Centrifugal Pumps, Expansion Tanks, and Venting
 - A. Pump types
 - B. Principle of operation
 - C. Pump curves and selection
 - D. System characteristics and curves
 - E. Net Positive Suction Head
 - F. Air Control and Venting
 - G. Compression tank sizing
- IX. Air Conditioning Systems and Equipment
 - A. System classification
 - B. Zones single and multiple
 - C. Reheat, multizone, dual duct, and VAV
 - D. All water systems
 - E. Air Water systems
 - F. Unitary units
 - G. Rooftop units
 - H. Air handling units

Q. LABORATORY OUTLINE: N/A