STATE UNIVERSITY OF NEW YORK ! COLLEGE OF TECHNOLOGY ! CANTON, NEW YORK !

MASTER SYLLABUS

COURSE NUMBER – COURSE NAME AREA 323 - PHOTOVOLTAIC SYSTEMS

Created by: Michael J. Newtown, P.E.

Updated by: Kibria Roman, Ph.D, P.E.

Canino School of Engineering Technology !

Department: Mechanical & Energy Technology !

Semester/Year: Fall/2018 !

A. <u>TITLE</u>: Photovoltaic Systems

B. <u>COURSE NUMBER</u>: AREA 323

C. <u>CREDIT HOURS</u>: (Hours of Lecture, Laboratory, Recitation, Tutorial, Activity)

Credit Hours: 3 # Lecture Hours: 3 per week # Lab Hours: per week Other: per week

Course Length: 15 Weeks

D. <u>WRITING INTENSIVE COURSE</u>: Yes \square No \boxtimes

E. <u>GER CATEGORY</u>: None: Yes: GER ! *If course satisfies more than one*: GER !

F. <u>SEMESTER(S) OFFERED</u>: Fall Spring Fall & Spring

G. <u>COURSE DESCRIPTION</u>:

Photovoltaic Systems examines the direct conversion of solar energy to electricity. Topics include photovoltaic (PV) cell physics, types of PV cells, PV system components, and PV energy storage.

H. <u>PRE-REQUISITES</u>: None Yes X If yes, list below:

MECH 225, Introduction to Thermodynamics

<u>CO-REQUISITES</u>: None Yes If yes, list below:

I. <u>STUDENT LEARNING OUTCOMES</u>: (see key below)

By the end of this course, the student will be able to:

<u>Course Student Learning Outcome</u> [SLO]	<u>Program Student Learning</u> <u>Outcome</u> [PSLO]	<u>GER</u> [If Applicable]	<u>ISLO & SUBSETS</u>	
calculate the size of battery bank, and array based on system requirement	SO # 6 An ability to identify, analyze and solve technical problems.		2-Crit Think 5-Ind, Prof, Disc, Know Skills ISLO	PS Subsets Subsets Subsets
calculate expected hourly and annual array power output.	SO # 6 An ability to identify, analyze and solve technical problems.		2-Crit Think 5-Ind, Prof, Disc, Know Skills ISLO	PS Subsets Subsets Subsets
evaluate the current state of array performance of various PV cell technologies.	SO # 8 A recognition of the need for, and an ability to engage in lifelong learning.		2-Crit Think 5-Ind, Prof, Disc, Know Skills ISLO	CA Subsets Subsets Subsets
design a stand-alone / utility interactive PV system.	VSO # 7 An ability to communicate effectively through written, oral, and graphic methods related to renewable energy systems.1-Comm Skills 2-Crit Think 5-Ind, Prof, Disc, Know Skills		1-Comm Skills 2-Crit Think 5-Ind, Prof, Disc, Know Skills	W CA Subsets Subsets
calculate life cycle cost of PV system and compare it with other competing technologies. SO #1 An appropriate mastery of the knowledge, techniques, and skills, and modern tools of their disciplines utilizing renewable energy systems and design parameters			1-Comm Skills 2-Crit Think 5-Ind, Prof, Disc, Know Skills	W CA Subsets Subsets

KEY	Institutional Student Learning Outcomes [ISLO 1 – 5]		
ISLO	ISLO & Subsets		
#			
1	Communication Skills		
	Oral [O], Written [W]		
2	Critical Thinking		
	Critical Analysis [CA], Inquiry & Analysis [IA], Problem		
	Solving [PS]		
3	Foundational Skills		
	Information Management [IM], Quantitative Lit,/Reasoning		
	[QTR]		
4	Social Responsibility		
	Ethical Reasoning [ER], Global Learning [GL],		
	Intercultural Knowledge [IK], Teamwork [T]		
5	Industry, Professional, Discipline Specific Knowledge and		
	Skills		

*Include program objectives if applicable. Please consult with Program Coordinator !

J. <u>APPLIED LEARNING COMPONENT:</u>

Yes	\square	No	
1 00	VV	110	

If YES, select one or more of the following categories:

Classroom/LabCivic EngagementInternshipCreative Works/Senior ProjectClinical PlacementResearchPracticumEntrepreneurshipService Learning(program, class, project)Community ServiceCommunity Service

K. <u>TEXTS</u>:

Photovoltaic Systems Engineering by R. A. Messenger and J. Ventre (CRC Press) 2004

L. <u>REFERENCES</u>:

Photovoltaics Design and Installation Manual by Solar Energy International (New Society Publishers) 2004

M. <u>EQUIPMENT</u>: None Needed:

N. **<u>GRADING METHOD</u>**: A-F

0. <u>SUGGESTED MEASUREMENT CRITERIA/METHODS</u>:

Grading may include homework, quizzes, exams, and a design project.

P. <u>DETAILED COURSE OUTLINE</u>:

1. The Sun

i. Solar radiation spectrum ii. Atmospheric effects on sunlight iii.Insolation and orientation

2. PV System Components

- i.PV cells, modules, and arrays
- ii.Energy storage
- iii.PV system loads
- iv.PV system availability
- v.Associated electronics (charge controllers, inverters, power trackers)
- vi.Wiring and code compliance
- 3. PV System Examples i.PV powered water pumping ii.PV powered lighting iii. Hybrid system iv.Utility interactive system v. Cathodic protection system

vi. Portable PV applications

4. Stand-Alone PV Systems i. Critical need system ii. Remote PV application iii. Hybrid system iv. Battery issues

5. Utility Interactive PV Systems

System sizing and economics
Net metering
Small (<10 kW) utility interactive PV systems
Medium utility interactive PV systems
Large utility interactive PV

6. PV Cell Physics

Optical absorption
Extrinsic semiconductors and the pn junction
Maximizing PV cell performance
Exotic junctions

- 7. Types of PV Cells i. Single crystal silicon ii. Multicrystalline silicon iii. Amorphous silicon cells iv. Exotic cells v. Emerging technologies
- 8. Additional topics as time permits i. PV cell panel life span ii. PV cell panel costs iii. Maintenance issues

Q. <u>LABORATORY OUTLINE</u>: None X Yes