STATE UNIVERSITY OF NEW YORK COLLEGE OF TECHNOLOGY CANTON, NEW YORK

MASTER SYLLABUS

COURSE NUMBER – COURSE NAME AUTO 214 – AUTOMOTIVE COMPUTER SYSTEMS

Created by: Brandon Baldwin

Updated by: Brandon Baldwin

Canino School of Engineering Technology

Department: AUTOMOTIVE TECHNOLOGY

Semester/Year: SPRING 2018

A. <u>TITLE</u>: Automotive Computer Systems

B. <u>COURSE NUMBER</u>: AUTO 214

C. <u>CREDIT HOURS</u>: (Hours of Lecture, Laboratory, Recitation, Tutorial, Activity)

Credit Hours: 3
Lecture Hours: 3 per week
Lab Hours: 2 per week
Other: per week

Course Length: 15 Weeks

D. <u>WRITING INTENSIVE COURSE</u>: Yes \square No \square

E. <u>GER CATEGORY</u>: None: Yes: GER ! *If course satisfies more than one*: GER !

F. <u>SEMESTER(S) OFFERED</u>: Fall Spring Kall & Spring

G. <u>COURSE DESCRIPTION</u>:

Review of electrical and electronic devices used in automobiles. Study of on-board diagnostic systems for both domestic and import vehicles. Diagnosis of computerized automotive systems. A writing intensive course.

H. <u>PRE-REQUISITES</u>: None Yes X If yes, list below:

AUTO 101, AUTO 111, AUTO 112, AUTO 122, AUTO 213

<u>CO-REQUISITES</u>: None Yes If yes, list below:

AUTO 212

I. <u>STUDENT LEARNING OUTCOMES</u>: (see key below)

By the end of this course, the student will be able to:

Course Student Learning Outcome [SLO]	<u>Program Student Learning</u> <u>Outcome</u> [PSLO]	<u>GER</u> [If Applicable]	<u>ISLO & SUBSETS</u>	
Describe the basic operation of an automotive computer.	ALO1		2-Crit Think 5-Ind, Prof, Disc, Know Skills ISLO	CA IA PS Subsets
Describe computer types and locations.	ALO1		2-Crit Think 5-Ind, Prof, Disc, Know Skills ISLO	CA IA PS Subsets
Access and interpret vehicle computer information using a scan tool.	ALO1		2-Crit Think 5-Ind, Prof, Disc, Know Skills ISLO	CA IA PS Subsets
Access and interpret vehicle computer information using a lab scope.	ALO1		2-Crit Think 5-Ind, Prof, Disc, Know Skills ISLO	CA IA PS Subsets
Perform diagnostics using scan tools and lab scopes.	ALO1		2-Crit Think 5-Ind, Prof, Disc, Know Skills ISLO	CA IA PS Subsets
Develop a systematic diagnostic process, the 8 step diagnostic process.	ALO1,ALO3		2-Crit Think 5-Ind, Prof, Disc, Know Skills ISLO	CA IA PS Subsets

Perform all of the above within the safety guidelines in Auto 101, 111 and reviewed at the beginning of this course.	ALO1	2-Crit Think 5-Ind, Prof, Disc, Know Skills ISLO	CA IA PS Subsets
Pass the Snap-On Diagnostic Exams.	ALO1	2-Crit Think 5-Ind, Prof, Disc, Know Skills ISLO	CA IA PS Subsets
Construct a report of waveforms and be able to discuss the results.		1-Comm Skills 2-Crit Think 5-Ind, Prof, Disc, Know Skills	W CA IA PS
Pass the NATEF End of Program Exams with 90% or better.	ALO1	2-Crit Think 5-Ind, Prof, Disc, Know Skills ISLO	CA IA PS Subsets

KEY	Institutional Student Learning Outcomes [ISLO 1 – 5]		
ISLO	ISLO & Subsets		
#			
1	Communication Skills		
	Oral [O], Written [W]		
2	Critical Thinking		
	Critical Analysis [CA] . Inquiry & Analysis [IA] . Problem		
	Solving [PS]		
3	Foundational Skills		
	Information Management [IM], Quantitative Lit,/Reasoning		
	[QTR]		
4	Social Responsibility		
	Ethical Reasoning [ER], Global Learning [GL],		
	Intercultural Knowledge [IK], Teamwork [T]		
5	Industry, Professional, Discipline Specific Knowledge and		
	Skills		

*Include program objectives if applicable. Please consult with Program Coordinator !

J. <u>APPLIED LEARNING COMPONENT:</u>

Yes 🛛 No 🗌

If YES, select one or more of the following categories:

Classroom/LabCivic EngagementInternshipCreative Works/Senior ProjectClinical PlacementResearchPracticumEntrepreneurshipService Learning(program, class, project)Community ServiceCommunity Service

K. <u>TEXTS</u>:

Diagnosis and Trouble Shooting of Automotive Electrical, Electronic, and Computer Systems by James Halderman. Electrical and Electronic Systems, NATEF Standards Job Sheets, current edition. by Jack Erjavec

L. <u>REFERENCES</u>:

ShopKeyPro, AllData, Subaru STIS, Snap-On scan tools

M. <u>EQUIPMENT</u>: None Needed: Snap-On Scanners, student tool list, low amp clamps

N. **<u>GRADING METHOD</u>**: A-F

O. <u>SUGGESTED MEASUREMENT CRITERIA/METHODS</u>:

exams, quizzes, homework, lab performance, Snap-On exams success results in additional certificates, report

P. <u>DETAILED COURSE OUTLINE</u>:

I. Introduction

- 1. Tools
- 2. Safety
- II. ABS, Traction Control, and Electronic Stablility Control systems
 - 1. Analyze and interpret wheel speed sensor data
 - 2. Analyze and interpret EBCM data and operation principles
- III. Supplemental Inflatable Restraint Systems
 - 1. Theory and operation
 - 2. Handling
- IV. Motor analysis and interpretation used for diagnosis
 - 1. fuel pumps
 - 2. ABS pumps
 - 3. window motors
- V. Solenoid analysis and interpretation use for diagnosis

- 1. starter
- 2. fuel injectors
- 3. EGR

VI. Computer communication progression

- 1. ODB I
- 2. OBD II
- 3. CAN/BUS
- 4. 10 modes of OBD II in CAN

VII. Snap-On Diagnostics Training using the Snap-On Verus

- 1. Navagation
- 2. Electrification and Measurement
- VIII. Hybrids
 - 1. Introduction
 - 2. Safety
 - 3. Regenerative Braking
 - 4. Fuel Cells

Q. <u>LABORATORY OUTLINE</u>: None X Yes

I. Introduction

- 1. Tools
- 2. Safety
- **II.** Review scan tool operations
 - 1. Data retrieval and interpretation
 - 2. Reading diagnostic trouble codes
 - 3. Using diagnostic trouble codes to diagnose concerns with diagnostic charts
 - 4. Repair concern associated with diagnostic trouble codes
 - 5. Diagnosis using snapshot and freeze frame functions
 - 6. Use of the 8 step diagnostic process.
- **III.** Lab scope operations
 - 1. Actuator data retrieval and interpretation
 - 2. Diagnosis using live signal viewing and waveforms
 - 3. Use low amperage clamps to retrieve waveforms

with one tool.

IV. Scan tool diagnostics using CAN/BUS

1. Observe and practice methods used with scan tools and DVOM that now

can be done

- 2. Observe and practice computer network communications
- V. Use the 10 Modes of OBD II to diagnose Engine Performance issues.
- VI. Hybrids
- 1. Safety
- 2. Scan Tool usage for diagnosis