MASTER SYLLABUS

BIOL218: Human Anatomy and Physiology II

CIP Code: 26.0499
For assistance determining CIP Code, please refer to this webpage https://nces.ed.gov/ipeds/cipcode/browse.aspx?y=55 or reach out to Sarah Todd at todds@canton.edu

Created by: Ron Tavernier
Updated by: William Rivers

School of Science, Health, and Criminal Justice
Science Department
Spring 2024
A. TITLE: Human Anatomy and Physiology II

B. COURSE NUMBER: BIOL218

C. CREDIT HOURS (Hours of Lecture, Laboratory, Recitation, Tutorial, Activity):

Credit Hours: 4
Lecture Hours _3_ per Week
Lab Hours _3_ per Week
Other ___ per Week

Course Length (# of Weeks): 15

D. WRITING INTENSIVE COURSE: No

E. GER CATEGORY:
GER 5: Natural Sciences and Scientific Reasoning

F. SEMESTER(S) OFFERED: Fall, Winter, Spring, Summer

G. COURSE DESCRIPTION:

This is the second in a sequence of two courses that studies the detailed anatomy and physiology of the human body. Topics include the anatomy and physiology of the endocrine, cardiovascular, lymphatic, respiratory, digestive, urinary, and reproductive systems. Also the subjects of the immune system, metabolism, fluid-electrolyte-acid-base balance, and pregnancy and development will be covered. The laboratory will include a dissection of the cat.

H. PRE-REQUISITES: Human Anatomy & Physiology I (BIOL 217) or equivalent or permission of instructor.

CO-REQUISITES:

I. STUDENT LEARNING OUTCOMES:

<table>
<thead>
<tr>
<th>Course Student Learning Outcome [SLO]</th>
<th>PSLO</th>
<th>GER</th>
<th>ISLO</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Identify and name the major organs and associated structures of the endocrine, cardiovascular, lymphatic, respiratory, digestive, urinary and reproductive systems.</td>
<td></td>
<td></td>
<td>5. Industry, Professional, Discipline Specific Knowledge and Skills</td>
</tr>
<tr>
<td>b. List and describe the functions of the major endocrine system hormones. Describe the mechanical and electrical events of the heart and the regulation of these events. Explain the regulation and blood flow patterns for</td>
<td></td>
<td></td>
<td>5. Industry, Professional, Discipline Specific Knowledge and Skills</td>
</tr>
</tbody>
</table>
the arterial and venous systems.

<table>
<thead>
<tr>
<th>c. Analyze the composition and describe the functions of blood. Explain the process of blood typing and the implications for blood transfusions. List and describe the functions of the lymphatic organs and tissues. Describe the division of the immune system and their functions.</th>
</tr>
</thead>
<tbody>
<tr>
<td>d. Explain the mechanics of breathing, transport of respiratory gases, gas exchange and the regulation of these events. Explain the digestive processes of the digestive organs and the regulation of these processes</td>
</tr>
<tr>
<td>e. Describe the process of urine formation and explain the regulation of this process. Describe the events of the male and female reproductive cycles and how these events are regulated.</td>
</tr>
<tr>
<td>f. Demonstrate an understanding of the methods scientists use to explore natural phenomena, including observation, hypothesis development, measurement and data collection, experimentation, evaluation of evidence, and employment of data analysis or mathematical modeling; and application of scientific data, concepts, and models in one of the natural sciences.</td>
</tr>
</tbody>
</table>

5. Industry, Professional, Discipline Specific Knowledge and Skills
<table>
<thead>
<tr>
<th>KEY</th>
<th>Institutional Student Learning Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISLO #</td>
<td>ISLO & Subsets</td>
</tr>
<tr>
<td>1</td>
<td>Communication Skills
Oral [O], Written [W]</td>
</tr>
<tr>
<td>2</td>
<td>Critical Thinking
Critical Analysis [CA], Inquiry & Analysis [IA], Problem Solving [PS]</td>
</tr>
<tr>
<td>3</td>
<td>Foundational Skills
Information Management [IM], Quantitative Lit./Reasoning [QTR]</td>
</tr>
<tr>
<td>4</td>
<td>Social Responsibility
Ethical Reasoning [ER], Global Learning [GL], Intercultural Knowledge [IK], Teamwork [T]</td>
</tr>
<tr>
<td>5</td>
<td>Industry, Professional, Discipline Specific Knowledge and Skills</td>
</tr>
</tbody>
</table>

J. **APPLIED LEARNING COMPONENT:**

Yes_______ No_______

If Yes, select one or more of the following categories:

- Classroom/Lab____
- Internship____
- Clinical Practicum____
- Practicum____
- Service Learning____
- Civic Engagement____
- Creative Works/Senior Project____
- Research____
- Entrepreneurship____
- Community Service____

K. **TEXTS:**

NOTE – Any edition of *Anatomy and Physiology* by Marieb can be used

HIGHLY Recommended and available at the SUNY Canton Bookstore

L. **REFERENCES:** NA

M. **EQUIPMENT:** Cat dissection voucher and gloves, available at SUNY Canton Bookstore. Arrangements to purchase these items will be made towards the middle of the semester.

N. **GRADING METHOD:**

A 90 and above
B+ 85 to 89
B 80 to 84
C+ 75 to 79
C 70 to 74
D+ 65 to 69
D 60 to 64
F 60 and below

0. SUGGESTED MEASUREMENT CRITERIA/METHODS:
 • Term tests
 • Lab exams
 • Final exam
 • Online quizzes

P. DETAILED COURSE OUTLINE:
I. Endocrine system
 A. Hormone type and cell interaction
 B. Major endocrine organs and their hormones
II. Cardiovascular system
 A. Macroscopic and microscopic heart anatomy
 B. Coronary circulation
 C. Cardiac muscle fibers
 D. Sequence of excitation
 E. Mechanical events of heart contraction
 F. Cardiac output
 G. Structure of blood vessels
 H. Arteriole, capillary and venous systems
 I. Blood pressure and circulation physiology
 J. Tissue perfusion
 K. Blood structure and function
 L. Erythrocyte anatomy and function
 M. Leukocyte anatomy and function
 N. Hemostasis
 O. Transfusion
III. Lymphatic system
 A. Lymphatic vessel structure
 B. Lymphatic tissues and organs
IV. Immune system
 A. Innate defense - surface barriers
 B. Innate defense – cells and chemicals
 C. Adaptive defense
 D. Antigens
 E. Humoral Immune response
 F. Cellular Immune response
V. Respiratory system
 A. Functional anatomy of the respiratory system
 B. Mechanics of breathing
 C. Physical rules of gas exchange
 D. Respiratory transport of gases
 E. Control of respiration
VI. Digestive system
 A. Digestive processes
 B. Organs of digestion – macroscopic and microscopic
 C. Digestion and absorption of nutrients
 D. Defecation
 E. Nutrition
 F. Metabolism

VII. Urinary system
 A. Kidney anatomy – macroscopic and microscopic
 B. Nephron anatomy and physiology
 C. Urine formation
 D. Micturition
 E. Osmoregulation – cellular and systemic

VIII. Reproductive system
 A. Anatomy of the male and female reproductive systems
 B. Gamete production – physiological processes and hormonal regulation
 C. Sexually transmitted diseases

Q. LABORATORY OUTLINE:

*Note that students must be able to identify all structures without a word bank or similar aid.

Body Organs and Endocrine System
 A. Label and identify endocrine anatomy on the torso models and posters.
 B. Identify the microscopic anatomy of the thyroid, adrenal, parathyroid and pituitary glands.
 C. Answer questions based on the experiments seen in the endocrine system video.
 D. Identify the major body organs listed using the torso models and posters.

 Be able to answer basic questions about the primary function of the organs.

Endocrine
Anatomy pineal gland
hypothalamus
pituitary gland
thyroid gland
thymus gland
adrenal glands
pancreas ovary
testis

Body Organs

Cardiovascular System

A. Label and identify the heart anatomy structures.
B. Define the terms systole, diastole and cardiac cycle. Describe the events of the cardiac cycle using an ECG recording.
C. Relate heart sounds to events in the cardiac cycle and be able to identify the heart sounds on an ECG recording.
D. Define a pulse, pulse deficit, the protocol required for determining a pulse and the calculation for determining a pulse deficit.
E. Be able to explain the protocol for determining blood pressure. Understand and be able to explain the effects of exercise and posture on blood pressure.
F. Understand how skin colour can be used as an indicator of circulatory function, including the influence of chemical and physical factors on skin colour.
G. Be able to identify the deflection waves and relate them to the events of the cardiac cycle on an ECG recording.
H. Be able to calculate heart rate using an ECG recording.
I. Be able to identify heart sounds on an ECG recording.
J. Describe the composition of blood, including the relative proportions of each component. Be able to discuss which conditions may result from an imbalance in leukocyte or erythrocyte numbers.
K. Be able to identify the microscopic structure of erythrocytes, platelets and the five types of leukocytes.
L. From a centrifuged hematocrit tube, be able to calculate the percent of each component in the blood.
M. Understand how blood typing is performed. Be able to determine an individual’s blood type following a blood-typing experiment. Be able to discuss blood transfusions using the terms agglutination, donor and recipient.
N. Be able to identify arteries and veins microscopically. Further, be able to identify the layers of the vessel walls on a microscope slide. Be able to identify the arteries and veins listed on the objective sheets on the cat, torso, vascular skull, arm and leg models.

Atria: Receiving Chambers
atria atrial septum
auricles pectinate
muscles fossa ovalis
superior vena cava
inferior vena cava
opening for coronary
sinus pulmonary veins

Ventricles: Discharging Chambers
ventricles
interventricular septum trabeculae
carnae pulmonary trunk
pulmonary arteries ascending
aorta

Aorta
ascending
aorta aortic
arch
descending
aorta
brachiocephali
common
carotid artery
left subclavian
artery
ligamentum
arteriosum

Valves
atroventricular
valves chordae tendineae
pulmonary semilunar
valve aortic semilunar
valve papillary muscles

Coronary Circulation
coronary arteries circumflex
artery anterior
interventricular artery
marginal artery posterior
interventricular artery great
cardiac vein small cardiac
vein middle cardiac vein
coronal sinus

THORACIC CAVITY

<table>
<thead>
<tr>
<th>Arteries</th>
<th>Veins</th>
</tr>
</thead>
<tbody>
<tr>
<td>aorta</td>
<td>azygous vein</td>
</tr>
<tr>
<td>aortic arch</td>
<td>superior</td>
</tr>
<tr>
<td>descending aorta</td>
<td>vena cava*</td>
</tr>
<tr>
<td>thoracic aorta*</td>
<td>r&l</td>
</tr>
<tr>
<td>brachiocephalic artery*</td>
<td>brachiocephalic veins*</td>
</tr>
<tr>
<td>right subclavian artery*</td>
<td>r&l internal jugular veins</td>
</tr>
<tr>
<td>left common carotid artery*</td>
<td>r&l external jugular veins*</td>
</tr>
<tr>
<td>right common carotid artery*</td>
<td>r&l subclavian veins*</td>
</tr>
<tr>
<td>left subclavian artery*</td>
<td></td>
</tr>
<tr>
<td>external carotid artery</td>
<td></td>
</tr>
<tr>
<td>internal carotid artery</td>
<td></td>
</tr>
<tr>
<td>vertebral artery</td>
<td></td>
</tr>
</tbody>
</table>

ABDOMINAL CAVITY

<table>
<thead>
<tr>
<th>Arteries</th>
<th>Veins</th>
</tr>
</thead>
<tbody>
<tr>
<td>inferior phrenic artery</td>
<td>inferior vena cava*</td>
</tr>
<tr>
<td>celiac trunk</td>
<td>hepatic veins</td>
</tr>
<tr>
<td>left gastric artery</td>
<td>superior mesenteric vein*</td>
</tr>
<tr>
<td>splenic artery</td>
<td>inferior</td>
</tr>
<tr>
<td>hepatic artery</td>
<td>mesenteric vein*</td>
</tr>
<tr>
<td></td>
<td>hepatic portal vein</td>
</tr>
<tr>
<td>superior mesenteric artery*</td>
<td>renal</td>
</tr>
<tr>
<td>renal artery*</td>
<td>vein*</td>
</tr>
<tr>
<td>suprarenal artery*</td>
<td>suprarenal vein*</td>
</tr>
<tr>
<td>gonadal artery*</td>
<td>gonadal vein*</td>
</tr>
<tr>
<td>inferior mesenteric artery*</td>
<td></td>
</tr>
<tr>
<td>abdominal aorta*</td>
<td></td>
</tr>
</tbody>
</table>

BRAIN

<table>
<thead>
<tr>
<th>Arteries</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>basilar artery</td>
<td></td>
</tr>
<tr>
<td>posterior communicating artery</td>
<td></td>
</tr>
</tbody>
</table>
posterior cerebral artery
middle cerebral artery
anterior cerebral artery
anterior communicating artery
ARMS

<table>
<thead>
<tr>
<th>Arteries</th>
<th>Veins</th>
</tr>
</thead>
<tbody>
<tr>
<td>axillary artery</td>
<td>axillary vein</td>
</tr>
<tr>
<td>brachial artery ulnar</td>
<td>brachial vein</td>
</tr>
<tr>
<td>artery radial artery</td>
<td>ulnar vein</td>
</tr>
<tr>
<td>deep palmar arch</td>
<td>radial vein median</td>
</tr>
<tr>
<td>superficial palmar arch</td>
<td>cubital vein</td>
</tr>
<tr>
<td>digital artery</td>
<td>cephalic vein</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LEGS</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Arteries</td>
<td>Veins</td>
</tr>
<tr>
<td>common iliac artery*</td>
<td>iliac vein* external</td>
</tr>
<tr>
<td>external iliac artery</td>
<td>iliac vein internal</td>
</tr>
<tr>
<td>artery internal iliac</td>
<td>iliac vein femoral</td>
</tr>
<tr>
<td>artery femoral artery</td>
<td>vein popliteal vein</td>
</tr>
<tr>
<td>popliteal artery</td>
<td>anterior tibial vein</td>
</tr>
<tr>
<td>anterior tibial artery</td>
<td>posterior tibial vein</td>
</tr>
<tr>
<td>posterior tibial artery</td>
<td>fibular vein great</td>
</tr>
<tr>
<td>artery fibular artery</td>
<td>saphenous vein</td>
</tr>
<tr>
<td>arcuate artery digital</td>
<td>small saphenous vein</td>
</tr>
<tr>
<td>artery</td>
<td>vein</td>
</tr>
</tbody>
</table>

Lymphatic System

A. Identify the anatomical structures of the lymphatic system

- Pharyngeal tonsil (T)
- Palatine tonsil
- Thymus gland
- Spleen
- Inguinal lymph nodes
- Axillary lymph nodes
- Cervical lymph nodes
- Lymphatic vessels
- Right lymphatic duct
- Cisterna chyli
- Thoracic duct
- Entrance of 2 ducts into the subclavian veins
- Appendix

Respiratory System

A. Identify the upper and lower respiratory structures listed on the attached sheet. Note that you will be tested using the models, torso and posters.
B. Define and be able to calculate lung capacities and volumes by using the equations discussed in lab.
C. Based on the tests performed in lab, answer questions about factors that influence respiratory rate.
D. Based on the tests performed in lab, answer questions about the function of buffers and the role of the blood as a buffer

Digestive System

A. Identify the digestive system structures listed on the attached sheets. Note that you will be tested using the mandible model, torso, cat and posters.

B. Identify a slide of small intestine, locating the villi, lumen and muscular layers

Mandible Model
- body of mandible
- ramus of mandible
- angle of mandible
- mandibular notch
- condyloid process
- coronoid process
- masseter muscle
- temporalis muscle
- gingivae teeth
- incisors
- canines (cuspids)
- premolars (bicuspids)
- molars enamel
- dentine
dental pulp
- root canal

Small Intestine Model
- villus
ductal goblet cells
- columnar epithelium
- intestinal crypts
- peyer’s patch
- lymphocytes
- circular muscle layer
- longitudinal muscle
- layer afferent artery of villus
- efferent vein of villus
- submucosa

Mandibular foramen
- inferior alveolar artery, vein & nerve
- mental foramen
- mental artery, vein & nerve

Sagittal Head Model & Poster
- oral orifice
- oral cavity
- oral mucosa
- mylohyoid muscle
- hyoid bone
- tongue
- lingual tonsil
- hard palate
- soft palate
- uvula
- fauces
- palatine tonsil
- parotid gland
- submaxillary gland
- (submandibular gland)
- sublingual gland
- oropharynx
- laryngopharynx
- esophagus
Thoracic Cavity esophagus diaphragm muscle
 location of esophageal hiatus cardiac sphincter
Stomach cardia
 fundus body
 pylorus
 pyloric sphincter
 rugae
 greater curvature
 lesser curvature
 greater omentum
Small intestine duodenum
 duodenal
 papilla ileum
 jejunum
Large intestine cecum
 ileocecal valve
 ascending colon
 hepatic flexure
 transverse colon
 splenic flexure
 descending colon
 sigmoid colon
 rectum
 mesentery
 appendix
Pancreas pancreatic duct
Gall bladder cystic duct
 R & L hepatic ducts
 common hepatic duct
 common bile duct
Liver right lobe
 left lobe caudate
 lobe quadrate
 lobe falciform
 ligament
Male & Female Pelvis Models
 parietal peritoneum visceral
 peritoneum sigmoid colon
 rectum anal canal internal anal
 sphincter external anal
 sphincter anus
Spleen

Urinary System
A. Identify the urinary system structures listed on the attached sheets. Note that you will be tested using the kidney models, renal corpuscle model, renal lobule model and cat.
B. Identify glomeruli on a slide of kidney tissue. Additionally, distinguish between a slide of healthy kidney and kidney infarction.
C. List normal and abnormal urinary components.
D. Use urinary dip sticks to identify abnormal urinary components in unknown samples of urine.
E. Correlate the presence of abnormal urinary components with specific metabolic disease conditions.

Renal Capsule
Renal Hilum
Renal Cortex
Renal Medulla
Renal Pyramid
Renal Papilla
Renal Medulla
Renal Column
Distal Convoluted Tubule
Renal Corpuscle
Proximal Convoluted Tubule
Loop of Henle
Collecting Duct
Renal Pelvis
Major Calyx
Minor Calyx
Ureter
Renal Vein
Interlobar vein
Arcuate Vein
Renal Artery
Interlobar Artery
Arcuate Artery

Reproductive System
A. Identify the reproductive system structures listed on the attached sheets. Note that you will be tested using the pelvis models, torso models and the cat.
B. Identify a slide of testis and ovary. Identify the required cell types on each slide

MALE PELVIS AND TORSO
Scrotum
testis
seminal vesicle
ductus (vas) deferens
ejaculatory duct
spermatic cord
prostate gland
bulbourethral gland
epididymis
Penis
bulb of penis prepuce
glans penis corpus
dissectum corpus
cavernosum
bulbospongiosus
muscle
ischiocavernosus
muscle Urethra
prostatic urethra
membranous urethra
spongy (penile)
urethra urogenital
diaphragm external
urethral sphincter
external urethral
orifice

FEMALE PELVIS AND TORSO

Ovary ovarian ligament
suspendory ligament of
ovary uterine tube
infundibulum of uterine
tube fimbriae Uterus
perimetrium myometrium
endometrium round
ligament uterosacral
ligament Cervix posterior
fornix anterior fornix
Vagina vaginal canal
vaginal orifice urogenital
diaphragm labium majus
labium minus
clitoris
mons pubis
GER 5 Natural Sciences

Outcomes to be Assessed

Students will demonstrate:

1. an understanding of the methods scientists use to explore natural phenomena, including observation, hypothesis development, measurement and data collection, experimentation, evaluation of evidence, and employment of data analysis or mathematical modeling; and

2. application of scientific data, concepts, and models in one of the natural sciences.

Method:

Assessment of Outcome #1 will be accomplished using a course-embedded 10-question instrument to be written by the instructors and submitted for initial approval to the GER 5 coordinator for review by the GER subcommittee of the Academic Assessment Committee.

Assessment of Outcome #2 will be course-embedded and will be based on either exam questions or laboratory assignments written by the instructor which require students to apply scientific data, concepts and models in one of the natural sciences.

The Office of Institutional Effectiveness selects a random 50% sample of GER 5 designated courses to undergo assessment for the fall semester during which GER 5 is up for review (once every three years). Faculty are notified of their course selection during the previous spring semester to allow time for planning assessment activities.

Instructors are responsible for entering their measures into Taskstream by the 4th week of fall semester and entering the findings for these measures into Taskstream by the end of the week following final grade submission. In addition, instructors must supply at least 3 student artifacts (1 from each level of proficiency: exceeded, met, not met) as samples and attach them in Taskstream. Three artifacts must be provided for both objectives.

Instructors are responsible for submitting the Data Collection Report (below) to the GER 5 coordinator by the end of the week following final grade submission.

Once all assessment is completed by the GER 5 Coordinator, they must prepare a summary of the results to be given to the General Education Assessment Committee Chair who will forward them to the GER committee for review.
<table>
<thead>
<tr>
<th>Learning Objectives:</th>
<th>Assessment tools:</th>
<th>Results/Findings:</th>
<th>Reflection/Use of Findings:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Below are the two objectives for GER 5: Natural Sciences. Faculty members are expected to record student proficiency in all areas</td>
<td>This list represents a variety of tools commonly used to assess this SLO. Please select the tool(s) you will be using for the GER assessment. Please highlight the tool(s) you are using, and add a brief description of the tool used (e.g., final exam essay #2) in the space to the right.</td>
<td>Record the number and percentage of students achieving at the different levels for each objective (not each measure.) Percentages will be based on the number of students who participated in the assessment only (e.g., if your course has 10 students enroll, but only 8 take the assessment, those 8 represent the denominator.)</td>
<td>Based on these results, briefly address what changes you plan for improving student learning.</td>
</tr>
</tbody>
</table>

Students will demonstrate:

<table>
<thead>
<tr>
<th># of students participating in assessment:</th>
<th>Exceeded</th>
<th>Met</th>
<th>Did not meet</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>%</td>
<td>N</td>
<td>%</td>
</tr>
</tbody>
</table>

1. An understanding of the methods scientists use to explore natural phenomena, including observation, hypothesis development, measurement and data collection, experimentation, evaluation of evidence, and employment of mathematical analysis.

- Assignment
- Exam question(s)
- Oral presentation
- Project (group or individual)
- Quiz
- Research paper
- Student Artifact
- Student Portfolio
- Other (Please specify):

<table>
<thead>
<tr>
<th>Description of tool(s):</th>
</tr>
</thead>
</table>

Students will demonstrate:

<table>
<thead>
<tr>
<th># of students participating in assessment:</th>
<th>Exceeded</th>
<th>Met</th>
<th>Did not meet</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>%</td>
<td>N</td>
<td>%</td>
</tr>
</tbody>
</table>

2. application of scientific data, concepts, and models in one of the natural sciences

- Assignment
- Exam question(s)
- Oral presentation
- Project (group or individual)
- Quiz
- Research Paper
- Student Artifact

<table>
<thead>
<tr>
<th>Description of tool(s):</th>
</tr>
</thead>
</table>
Learning Objectives:

Below are the two objectives for GER 5: Natural Sciences. Faculty members are expected to record student proficiency in all areas.

Assessment tools:

This list represents a variety of tools commonly used to assess this SLO. Please select the tool(s) you will be using for the GER assessment. Please highlight the tool(s) you are using, and add a brief description of the tool used (e.g., final exam essay #2) in the space to the right.

Results/Findings:

Record the number and percentage of students achieving at the different levels for each objective (not each measure.) Percentages will be based on the number of students who participated in the assessment only (e.g., if your course has 10 students enroll, but only 8 take the assessment, those 8 represent the denominator.)

Reflection/Use of Findings:

Based on these results, briefly address what changes you plan for improving student learning.

<table>
<thead>
<tr>
<th>Students will demonstrate:</th>
<th># of students participating in assessment:</th>
<th>Exceeded</th>
<th>Met</th>
<th>Did not meet</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>N</td>
<td>%</td>
<td>N</td>
</tr>
<tr>
<td>Student portfolio</td>
<td></td>
<td>N</td>
<td>%</td>
<td>N</td>
</tr>
<tr>
<td>Other (Please specify):</td>
<td></td>
<td>N</td>
<td>%</td>
<td>N</td>
</tr>
</tbody>
</table>

Please include planned changes to curriculum, teaching and assessment methods, and/or support services.

GER Assessment Policies

Faculty and students will periodically be required to engage in assessment activities to ensure that the General Education learning outcomes are being met.

- GER student learning outcomes are assessed on a three year cycle through the courses designated as meeting that GER.
- Any instructor (full-time or adjunct) teaching any course with a GER designator (online or face-to-face) may be called to participate in GER assessment activities.
- A random sample of GER designated courses are selected by the Office of Institutional Effectiveness during the spring semester preceding the GER assessment year. If a faculty member is teaching two of the same course they have the option of choosing either section for assessment.

Timeline for GER Assessment:

- **February (Spring Semester):** Office of Institutional Effectiveness (OIE) notifies GER assessment coordinator of upcoming assessment and calls for methodology revisions (if any)
- **March 1:** Methodology changes for upcoming assessment cycle must be submitted to GER Assessment Subgroup
- **Mid-April:** OIE selects courses up for GER review the following fall and notifies faculty
- **2nd week of classes (Fall Semester):** OIE reminds faculty (and notifies new faculty) of GER assessment requirements
- **End of 4th week of classes:** Faculty must enter their assessment measures of GER course SLOs into Task Stream.
- End of 5th week of classes: Faculty update GER coordinator on progress with measure entry in Task Stream.
- 1 week after final grade submission: Faculty must enter findings to Taskstream measures and submit Data Collection Reports to GER coordinator along with student artifacts.
- Friday before the first week of classes (Spring Semester): faculty will meet to discuss GER findings and strategic plan for improving student learning.
- March 1: GER Summary Report and GER Campus Report due to GER Assessment Subcommittee for review and recommendations.
- March 15: GER Assessment Subcommittee presents reports and recommendations to Academic Assessment Committee
- April 1: Academic Assessment Committee presents reports to Deans’ Cabinet for inclusion in budget (if applicable.)

- **Protocol for creating a new course for GER approval:**
 - For a course to be accepted as a GER course, the GER assessment methodology must be attached to the course proposal as it moves forward to curriculum committee. GER mapping to course SLOs must be present in course proposal.
 - Course SLO’s need to include the GER SLO’s.

- **Protocol for Methodology Revision**
 - Faculty who wish to revise their GER methodology must submit proposed methodology to the GER committee by the fifth week of the semester before their assessment cycle begins.
 - The GER committee will review and provide feedback for revision, and if necessary request a meeting with the GER coordinator. They will provide feedback within six weeks.
 - Resubmission of the revised methodology must occur by the last day of the semester prior to the assessment cycle the methodology will be used in.
 - If the methodology does not comply with the needs of the campus and SUNY standards, the previous methodology will be employed for the assessment cycle.