STATE UNIVERSITY OF NEW YORK COLLEGE OF TECHNOLOGY CANTON, NEW YORK

MASTER SYLLABUS

COURSE NUMBER – COURSE NAME BSAD 304 – Business Analytics

CIP Code: 52.1301 For assistance determining CIP Code, please refer to this webpage <u>https://nces.ed.gov/ipeds/cipcode/browse.aspx?y=55</u> or reach out to Sarah Todd at todds@canton.edu

Created by: Shuting Wang and Chengru Hu

Updated by: Elena A Khapalova

School of Business and Liberal Arts

Department: Business

Semester/Year: Spring/2026

A. TITLE: Business Analytics

B. COURSE NUMBER: BSAD 304

C. CREDIT HOURS: (Hours of Lecture, Laboratory, Recitation, Tutorial, Activity)

Credit Hours: 3
Lecture Hours: 3 per week
Lab Hours: per week
Other: per week

Course Length: 15 Weeks

- D. WRITING INTENSIVE COURSE: Yes \Box No \boxtimes
- E. GER CATEGORY: None: Yes: GER *If course satisfies more than one*: GER
- F. SEMESTER(S) OFFERED: Fall Spring Fall & Spring

G. COURSE DESCRIPTION:

This course will introduce students to business analytics with a focus on prescriptive analytics and spreadsheet (Excel) modeling. Topics will include linear, integer, and nonlinear programming models (product mix, make or buy, plant location, etc.), distribution and network models (transportation, transshipment, shortest-route, etc.), and forecasting.

H. PRE-REQUISITES: None \Box Yes \boxtimes If yes, list below:

(CITA 108 or 109 or 110) and (MATH 111 or MATH 121 or MATH 123 or MATH 141 or MATH 161 or MATH 162) and minimum 30 credit hours.

CO-REQUISITES: None \boxtimes Yes \square If yes, list below:

I. STUDENT LEARNING OUTCOMES: (see key below)

By the end of this course, the student will be able to:

<u>Course Student Learning Outcome</u> [SLO]	Program Student Learning Outcome [PSL0]	<u>GER</u> [If Applicable]	<u>ISLO & SUBSET</u>	<u>TS</u>
Describe the steps involved in developing decision models			5-Ind, Prof, Disc, Know Sk ISLO ISLO	ills Subsets Subsets Subsets

		Subsets
Be able to set up and solve linear programming problems using Excel Solver.	2-Crit Think ISLO ISLO	PS Subsets Subsets Subsets
Be able to formulate, set up, and solve transportation models using Excel Solver.	2-Crit Think ISLO ISLO	PS Subsets Subsets Subsets
Be able to formulate, set up, and solve shortest-path network models using Excel Solver.	2-Crit Think ISLO ISLO	PS Subsets Subsets Subsets
Be able to formulate, set up, and solve integer programming models using Excel Solver.	2-Crit Think ISLO ISLO	PS Subsets Subsets Subsets
Understand when to use various types of forecasting models.	5-Ind, Prof, Disc, Knov ISLO ISLO	v Skills Subsets Subsets Subsets Subsets Subsets
	ISLO ISLO ISLO	Subsets Subsets Subsets Subsets

KEY	Institutional Student Learning Outcomes [ISLO 1 – 5]	
ISLO	ISLO & Subsets	
#		
1	Communication Skills	
	Oral [O], Written [W]	
2	Critical Thinking	
	Critical Analysis [CA] , Inquiry & Analysis [IA] , Problem	
	Solving [PS]	
3	Foundational Skills	
	Information Management [IM], Quantitative Lit,/Reasoning	
	[QTR]	

4	Social Responsibility
	Ethical Reasoning [ER], Global Learning [GL],
	Intercultural Knowledge [IK], Teamwork [T]
5	Industry, Professional, Discipline Specific Knowledge and Skills

*Include program objectives if applicable. Please consult with Program Coordinator

J. APPLIED LEARNING COMPONENT: Yes

If YES, select one or more of the following categories:

Classroom/Lab	Civic Engagement
Internship	Creative Works/Senior Project
Clinical Placement	Research
Practicum	Entrepreneurship
Service Learning	(program, class, project)
Community Service	

No

K. <u>TEXTS</u>:

Balakrishnan, N., Render, B., & Stair, Jr., R. M. (2013). Managerial Decision Modeling with Spreadsheets, 3rd edition. NJ: Pearson or similar textbook/OER resources.

L. REFERENCES:

M. EQUIPMENT: None Needed: Laptops (provided to students in regular classroom) or classroom equipped with computers. Computers must have Microsoft Excel installed and the Solver Add-in enabled.

N. GRADING METHOD: A-F

0. SUGGESTED MEASUREMENT CRITERIA/METHODS:

Exams/quizzes, assignments, small project/case study.

P. DETAILED COURSE OUTLINE:

I. Introduction to managerial decision modeling

- A. What is decision modeling? Types of decision models.
- B. Steps involved in decision modeling and possible problems.
- C. Examples
- II. Linear programming (LP) models
 - A. LP model properties and assumptions
 - **B.** Formulating an LP problem
 - **B.** Using Excel Solver to solve LP problems
 - C. Sensitivity analysis
- III. Linear programming modeling applications

- A. Manufacturing applications (product mix, etc.)
- **B.** Blending application
- **C. Other applications**
- IV. Transportation, Assignment, and Network models
 - A. Transportation models
 - **B.** Transshipment models
 - C. Assignment models
 - **D.** Maximal-Flow models
 - **E. Shortest-Path models**

V. Integer, Goal, and Nonlinear programming models

- A. Models with general integer variables
- **B.** Models with binary variables
- C. Mixed integer models
- **D.** Goal programming
- E. Nonlinear programming
- **VI.** Forecasting
 - A. Qualitative forecasting models
 - **B.** Basic time-series forecasting models
 - C. Trend and seasonality
 - **D.** Causal forecasting
- VII. Decision Analysis and other topics (as time permits)

Q. LABORATORY OUTLINE: None \boxtimes Yes \square