STATE UNIVERSITY OF NEW YORK COLLEGE OF TECHNOLOGY CANTON, NEW YORK

MASTER SYLLABUS

CITA152 – COMPUTER LOGIC

Created by: Judith Beider Updated by: Stacia Smith/Thomas Burl

> CANINO SCHOOL OF ENGINEERING TECHNOLOGY DECISION SYSTEMS FALL 2024

A. <u>TITLE</u>: Computer Logic

B. <u>COURSE NUMBER</u>: 152

C. <u>CREDIT HOURS (Hours of Lecture, Laboratory, Recitation, Tutorial, Activity):</u>

Credit Hours: 3# Lecture Hours per Week: 3# Lab Hours per Week: Other per Week:

Course Length (# of Weeks): 15

D. <u>WRITING INTENSIVE COURSE</u>: No

- E. <u>GER CATEGORY</u>:
- F. <u>SEMESTER(S) OFFERED</u>: Fall, Spring

G. <u>COURSE DESCRIPTION</u>:

This course provides a foundation necessary to create structured program logic. It introduces students to programming concepts and program design through the study of a programming language with a reduced set of instructions. Topics include number systems, relational and logical operators, understanding structures, arrays, making decisions and problem solving skills used in computing.

H. <u>PRE-REQUISITES/CO-REQUISITES</u>:

- a. Pre-requisite(s): None
- b. Co-requisite(s): None
- c. Pre- or co-requisite(s): None

I. <u>STUDENT LEARNING OUTCOMES</u>:

Course Student Learning Outcome [SLO]	<u>PSLO</u>	GER	ISLO
a. Define number systems and	1		1 [O, W], 5
apply conversion rules between			
different number systems			
b. Describe arrays and their use	1		1 [O, W], 5
in programming languages			
c. Examine general problem	5		2 [PS], 5
solving methods. Apply			
problem solving techniques to			
designing simple programs			
d. Experiment with a reduced	4, 5		2 [IA], 5
instruction set programming			
language to write simple			
programs.			
e. Recognize the relationship	5		5
between program variables and			
their memory representation			

f. Differentiate between	5	5
arithmetic, relational and		
logical operators. Apply them		
in control expressions for loop		
and decision statements		

KEY	Institutional Student Learning Outcomes [ISLO 1 – 5]
ISLO #	ISLO & Subsets
1	Communication Skills Oral [O], Written [W]
2	Critical Thinking Critical Analysis [CA], Inquiry & Analysis [IA], Problem Solving [PS]
3	Foundational Skills Information Management [IM], Quantitative Lit,/Reasoning [QTR]
4	Social Responsibility Ethical Reasoning [ER], Global Learning [GL], Intercultural Knowledge [IK], Teamwork [T]
5	Industry, Professional, Discipline Specific Knowledge and Skills

J. APPLIED LEARNING COMPONENT:

Yes No X

If Yes, select one or more of the following categories:

Classroom/Lab____ Internship____ Clinical Practicum____ Practicum____ Service Learning____ Community Service Civic Engagement____ Creative Works/Senior Project____ Research____ Entrepreneurship____ (program, class, project)

K. <u>**TEXTS:**</u> No

L. <u>REFERENCES</u>:

Farrell, J., Programming Logic & Design 9th Edition, 2018, Cengage Learning

M. <u>EQUIPMENT</u>: Technology Enhanced Classroom

N. **<u>GRADING METHOD</u>**: A-F

O. <u>SUGGESTED MEASUREMENT CRITERIA/METHODS</u>:

- Exams
- Quizzes
- Assignments

P. <u>DETAILED COURSE OUTLINE</u>:

- I. Number Systems
 - A. How Number Systems Work
 - B. The Binary Number System
 - C. The Decimal Number System
 - D. The Hexadecimal Number System
 - E. Number System Conversions
 - a. From Decimal
 - b. To Decimal
 - c. Binary and Hexadecimal
- II. The Program Development Cycle
- III. Structured programming Introduction
 - A. Program design concepts and tools
 - B. Variables and constants
 - C. Language structures
 - a. And/Or statements
 - b. Assignment statements
 - c. Loops
 - d. Decisions
 - e. Arrays
 - D. Modules and Procedures
 - E. Simple programs
 - F. Concepts of integrated development environment (IDE)

Q. <u>LABORATORY OUTLINE</u>: