STATE UNIVERSITY OF NEW YORK COLLEGE OF TECHNOLOGY CANTON, NEW YORK

MASTER SYLLABUS

CITA 180 – Introduction to Programming CIP Code: 11.0201

Created by: Robert House Updated by: Thomas Burl

> Canino School of Engineering Technology Decision Systems

Fall 2021

A. <u>TITLE</u>: Introduction to Programming

B. <u>COURSE NUMBER</u>: CITA 180

C. <u>CREDIT HOURS (Hours of Lecture, Laboratory, Recitation, Tutorial, Activity):</u>

Credit Hours: 4# Lecture Hours per Week:# Lab Hours per Week: Other per Week:

Course Length (# of Weeks): 15

D. <u>WRITING INTENSIVE COURSE</u>:

- E. <u>GER CATEGORY</u>:
- F. <u>SEMESTER(S) OFFERED</u>: <u>Fall/Spring</u>

G. <u>COURSE DESCRIPTION</u>:

In this course, students will learn the fundamentals of programming problem-solving with algorithms. Students will learn how to work work with variables to store information for later use. Student will put the following coding structures into play – sequential, decision, and repetition to solve a problem. Students will then focus on the reuseability of code with methods and modules.

H. <u>PRE-REQUISITES/CO-REQUISITES</u>:

- a. Pre-requisite(s): CITA 152
- b. Co-requisite(s):
- c. Pre- or co-requisite(s):

I. <u>STUDENT LEARNING OUTCOMES</u>:

Course Student Learning Outcome [SLO]	<u>PSLO</u>	GER	<u>ISLO</u>
a. design an algorithm to solve a problem	5		[2], [5]
b. identify appropriate data structures to implement in the algorythm	7		[2], [5]
c. implement local and global variables	7		[2], [5]
d. develop methods and modules to support specific and generic solutions	7		[2], [5]
e. implement program constructs (If and Loop statement) to support the solution	7		[2], [5]
f. implement a class	7		[2], [5]

KEY	Institutional Student Learning Outcomes
	[ISLO 1 – 5]
ISLO	ISLO & Subsets
#	
1	Communication Skills
	Oral [O], Written [W]
2	Critical Thinking
	Critical Analysis [CA], Inquiry & Analysis [IA],
	Problem Solving [PS]
3	Foundational Skills
	Information Management [IM], Quantitative
	Lit,/Reasoning [QTR]
4	Social Responsibility
	Ethical Reasoning [ER], Global Learning [GL],
	Intercultural Knowledge [IK], Teamwork [T]
5	Industry, Professional, Discipline Specific
	Knowledge and Skills

J. <u>APPLIED LEARNING COMPONENT:</u>

Yes____ No____

If Yes, select one or more of the following categories:

Classroom/Lab____ Internship____ Clinical Practicum___ Practicum___ Service Learning___ Community Service___ Civic Engagement___ Creative Works/Senior Project___ Research___ Entrepreneurship___ (program, class, project)

K. <u>TEXTS:</u>

The C Programming Language, Brian W. Kernighan and Dennis M. Ritchie, <u>http://citeseer.ist.psu.edu/viewdoc/download?doi=10.1.1.126.4437&rep=rep1&type</u> <u>=pdf&ei=Zc-</u> <u>oTuDCDOLj0QHI9vSWDg&usg=AFQjCNHhHGkz21dQ1FHDdmlqOrGGMrcKiA</u> *The Practice of Programming*, Kernighan and Pike, <u>http://asaha.com/download/DNDq2Mw--</u>

C Puzzle Book, Alan R. Feuer, http://www.4shared.com/document/5cBIBLhr/The_C_Puzzle_Book.html

L. <u>REFERENCES</u>:

The Basics of C Programming, Marshall Brain, <u>http://www.howstuffworks.com/c.htm#</u>

C Programming Language, DI Management, <u>http://www.di-mgt.com.au/cprog.html</u>

Programming Tutorials: C++ Made Easy and C Made Easy, Cprogramming.com, <u>http://www.cprogramming.com/tutorial.html#ctutorial</u>

M. <u>EQUIPMENT</u>:

Computer class room

N. <u>GRADING METHOD</u>: A-F

O. <u>SUGGESTED MEASUREMENT CRITERIA/METHODS</u>: programming assignments, exams, and quizzes P. DETAILED COURSE OUTLINE:

I. Problem Solving Techniques and Algorithm Development

- a. Steps in problem solving
- b. On the use of algorithmic notation
- c. Pseudo-code notation
- II. Functions
 - a. Declarations and definitions
 - b. Parameters and arguments
 - c. Various argument passing methodologies
- III. Selection constructs
 - a. Boolean expressions
 - b. Format of selectors
- IV. Iterative constructs
 - a. While constructs
 - b. For constructs
 - c. Sentinel considerations
- V. File I/O
 - a. Types of file
 - b. Declarations
 - c. Using multiple input/output files
- VI. Structures and Classes
 - a. Definition
 - b. Common uses
 - c. Public/private components in structures
 - d. Accessor functions

Q. <u>LABORATORY OUTLINE</u>: