STATE UNIVERSITY OF NEW YORK COLLEGE OF TECHNOLOGY CANTON, NEW YORK

MASTER SYLLABUS

CITA204 – SYSTEM ANALYSIS AND DESIGN

Created by: Eric Cheng Updated by: Eric Cheng

> Canino School of Engineering Technology Department of Decision & Graphic Media Systems Fall/2022

- A. <u>TITLE</u>: SYSTEMS ANALYSIS AND DESIGN
- B. <u>COURSE NUMBER</u>: CITA 204
- C. <u>CREDIT HOURS</u>: 3 lecture hours per week for 15 weeks
- D. WRITING INTENSIVE COURSE: Yes
- E. <u>GER CATEGORY</u>: No
- F. <u>SEMESTER(S) OFFERED</u>: Spring
- G. <u>COURSE DESCRIPTION</u>: A course designed to guide the student through the evolution of a system, an analysis of the present flow of information and the specifications, selection and implementation of information processing systems. The scope of a system development study will transcend mere knowledge of specific systems to include a study of the total management system.

H. <u>PRE-REQUISITES/CO-REQUISITES</u>:

a. Pre-requisite(s): Database Applications and Concepts (CITA 215), or Introduction to Programming (CITA 180)b. Co-requisite(s): None

I. <u>STUDENT LEARNING OUTCOMES</u>:

<u>Course Student Learning</u> Outcome [SLO]	<u>PSLO</u>	<u>GER</u>	<u>ISLO</u>
a. Identify the role of information technology in supporting operational and business requirements, and management decision-making	2. Identify issues and collaborate on solutions concerning IT in an effective and professional manner		2 [CA]
b. Apply the systems development life cycle model to a computer- based information system	3. Demonstrate a solid understanding of the methodologies and foundations of IT		2 [IA, PS] 5
c. Use the tools and techniques of systems analysis and design professionals	3. Demonstrate a solid understanding of the methodologies and foundations of IT		2 [CA] 5
d. Understand and use the terminology associated with information systems development	3. Demonstrate a solid understanding of the methodologies and foundations of IT		5
e. Demonstrate the ability to interact with clients, users, and management, as well as with team members in promoting a successful project outcome	1. Communicate effectively both verbally and in writing		1 [O, W] 4 [T, GL]
f. Employ project management and/or team leadership skills in planning, coordinating, and ensuring quality of the assigned tasks.	1. Communicate effectively both verbally and in writing		1 [O] 4 [T] 5

 3. Demonstrate a solid understanding of the methodologies and foundations of IT 4. Apply problem solving and
troubleshooting skills

KEY	Institutional Student Learning Outcomes [ISLO
	1 - 5
ISLO	ISLO & Subsets
#	
1	Communication Skills
	Oral [O], Written [W]
2	Critical Thinking
	Critical Analysis [CA] , Inquiry & Analysis [IA] ,
	Problem Solving [PS]
3	Foundational Skills
	Information Management [IM], Quantitative
	Lit,/Reasoning [QTR]
4	Social Responsibility
	Ethical Reasoning [ER], Global Learning [GL],
	Intercultural Knowledge [IK], Teamwork [T]
5	Industry, Professional, Discipline Specific
	Knowledge and Skills

J. <u>APPLIED LEARNING COMPONENT:</u>

Yes<u>X</u> No_____

- Classroom/Lab
- Creative Works/Project

K. <u>TEXTS:</u>

Systems Analysis and Design, by Scott Tilley, Course Technology; 12th edition, 2020; ISBN: 978-0357117811

- L. <u>REFERENCES</u>: None
- M. <u>EQUIPMENT</u>: Computer classroom
- N. **<u>GRADING METHOD</u>**: A-F

O. <u>SUGGESTED MEASUREMENT CRITERIA/METHODS</u>:

- Assignments
- Examinations
- Project

P. <u>DETAILED COURSE OUTLINE</u>:

I. The Role of System Analysis and Design at the Enterprise Level

- II. Systems Planning Analyzing the Business Case
 - A. An introduction to systems analysis and design by describing the role of information technology in today's dynamic business environment.
 - 1. Information systems, Internet business strategies, modeling business operations
 - 2. Business information systems, organizational information models, systems development,
 - 3. The information technology department, and the role of the systems analyst.
 - B. Analyzing the business case, explains how systems projects get started, and describes how to evaluate a project proposal to determine its feasibility.
 - 1. Strategic planning and strategic planning tools, the business case, systems requests,
 - 2. Factors affecting systems projects, processing systems requests,
 - 3. Assessing request feasibility, setting priorities, and the preliminary investigation.
 - C. Managing systems projects.
 - 1. An overview of project management, creating a work breakdown structure, task patterns, the critical path,
 - 2. Project monitoring and control, reporting, project management software,
 - 3. Risk management, and managing for success.
- III. Systems Analysis
 - A. The requirements engineering process.
 - 1. System requirements, team-based techniques,
 - 2. Gathering requirements through interviews and other methods, gathering requirements in agile projects,
 - 3. Representing requirements, validating and verifying requirements, and requirements tools.
 - B. Data and process modeling techniques that analysts use to show how the system transforms data into useful information.
 - 1. Logical versus physical models, data flow diagrams and symbols,
 - 2. Drawing data flow diagrams, drawing context diagrams, drawing diagram 0 DFDs, drawing lower-level DFDs,
 - 3. Data dictionaries, and process descriptions.
 - C. Object modeling techniques that analysts use to create a logical model.
 - 1. Object-oriented analysis, objects, attributes, methods, messages, classes,
 - 2. Relationships among objects and classes,
 - 3. The Unified Modeling Language (UML), and tools.
 - D. Development strategies for the new system and plans for the transition to the systems design phase.
 - 1. Traditional versus web-based systems development, evolving trends,
 - 2. in-house software development options, outsourcing, offshoring, Software as a Service (SaaS), selecting a development strategy,
 - 3. the software acquisition process, and completion of systems analysis tasks.
- IV. System Design
 - A. User interface design.
 - 1. This includes human-computer interaction, seven habits of successful interface designers, guidelines for user interface design,
 - 2. Source document and form design, printed output, technology issues,
 - 3. Security and control issues, and emerging trends.
 - B. The data design skills that are necessary for a systems analyst to construct the physical model of the information system.
 - 1. DBMS components, web-based design, data design terms, entity-relationship diagrams,
 - 2. Data normalization, codes, data storage and access, and data control.

- C. System architecture, which translates the logical design of an information system into a physical blueprint.
 - 1. This includes an architecture checklist, the evolution of system architecture, client/server architecture,
 - 2. The impact of the Internet, e-commerce architecture, processing methods,
 - 3. Network models, wireless networks, and systems design completion.
- V. Systems Implementation
 - A. Managing systems implementation throughout the useful life of the system.
 - B. Quality assurance, application development (structured, object-oriented, and agile), coding, testing, documentation, and system installation.
- VI. Systems Support and Security
 - A. Managing systems support and security throughout the useful life of the system.
 - B. User support, maintenance tasks, maintenance management, performance management, security levels, backup and recovery, system retirement, and future challenges and opportunities.

Q. <u>LABORATORY OUTLINE</u>: Not applicable