STATE UNIVERSITY OF NEW YORK COLLEGE OF TECHNOLOGY CANTON, NEW YORK

MASTER SYLLABUS

CITA 260 - INTRODUCTION TO WIRELESS TECHNOLOGY

Created by: Minhua Wang Updated by: Minhua Wang

- A. TITLE: Introduction to Wireless Technology
- B. COURSE NUMBER: CITA 260
- C. CREDIT HOURS: (Hours of Lecture, Laboratory, Recitation, Tutorial, Activity)

Credit Hours: 3

Lecture Hours: 3 per week # Lab Hours: per week Other: per week

Course Length: 15 Weeks

- **D. WRITING INTENSIVE COURSE**: No
- E. **GER CATEGORY**: None
- F. <u>SEMESTER(S) OFFERED</u>: Spring
- **G.** <u>COURSE DESCRIPTION</u>: This course introduces various aspects of wireless technology including wireless networks, authentication, protocols, security, installation considerations, and standards. Projects to determine signal strengths from different antenna types and locations are assigned.

H. PRE-REQUISITES/CO-REQUISITES:

- a. Pre-requisite(s): CITA 220 Data Communications and Network Technology
- b. Co-requisite(s): none
- c. Pre- or co-requisite(s): none

I. STUDENT LEARNING OUTCOMES:

By the end of this course, the student will be able to:

Course Student Learning Outcome	<u>PSLO</u>	<u>ISLO</u>
[SLO]		
a. Define concepts of radio frequency	3. Demonstrate a solid understanding	5
communications as they apply to	of the methodologies and	
contemporary spread spectrum wireless	foundations of IT	
networks including 802.11, Bluetooth,		
Home RF, and Open Air		
b. Identify and apply concepts of 802.11	3. Demonstrate a solid understanding	5
network authentication, association,	of the methodologies and	
service sets, roaming, and power	foundations of IT	
management		
c. Explain concepts of 802.11 Physical	3. Demonstrate a solid understanding	5
and Data Link Layer protocols	of the methodologies and	
	foundations of IT	
d. Recognize inherent radio-based	3. Demonstrate a solid understanding	5
network security vulnerabilities	of the methodologies and	
	foundations of IT	

e. Identify alternate protocols and	3. Demonstrate a solid understanding	5
technologies designed to vastly improve	of the methodologies and	
wireless network security	foundations of IT	
f. Identify wireless LAN standards and	3. Demonstrate a solid understanding	5
the regulators and organizations	of the methodologies and	
responsible for their development and	foundations of IT	
maintenance		

•	A DDI JED J E A DAMAG	COMPONENT
J.	APPLIED LEARNING	COMPONENT:

Yes_X___ No____

- Classroom/Lab
- K. % <u>TEXTS:</u> Price, R. (2007). Fundamentals of Wireless Networking. Columbus, OH: McGraw-Hill Higher Education.
- L. % REFERENCES: N/A
- **M. EQUIPMENT:** Computer lab classroom with antennas, wireless access point, and cabling
- N. % **GRADING METHOD:** A-F
- O. % <u>SUGGESTED MEASUREMENT CRITERIA/METHODS</u>:
 - Exams
 - Quizzes
 - Projects

P. <u>DETAILED COURSE OUTLINE</u>:

- I. Fundamentals of Network Technology
 - A. Network Models
 - B. History of Network Development
 - II. Introduction to Wireless Local Area Networks
 - A. The Wireless LAN Market
 - B. Wireless LAN Applications

III. Radio Frequency (RF) Fundamentals

- A. RF
- B. Principles of Antennas
- C. RF Mathematics

IV. Spread Spectrum Technology

- A. Introducing Spread Spectrum
- B. Frequency-Hopping Spread Spectrum (FHSS)
- C. Distributed Sequence Spread Spectrum (DSSS)
- D. Comparing FHSS and DSSS

V. Wireless LAN Infrastructure Devices

- A. Access Points
- B. Wireless Bridges
- C. Wireless Workgroup Bridges
- D. Wireless LAN Client Devices
- E. Wireless Residential Gateways
- F. Enterprise Wireless Gateways

VI. Antennas and Accessories

- A. RF Antennas
- B. Power-over-Ethernet (PoE) Devices
- C. Wireless LAN Accessories

VII. Wireless LAN Organizations and Standards

- A. FCC
- B. IEEE
- C. Major Organizations
- D. Competing Technologies

VIII. The 802.11 Network Architecture

- A. Locating a Wireless LAN
- B. Authentication and Association
- C. Service Sets
- D. Power Management Features

IX. Physical Layers

- A. How Wireless LANs Communicate
- B. Inter-frame Spacing
- C. Request to Send/Clear to Send (RTS/CTS)
- D. Modulation

X. Troubleshooting Wireless LAN Installations

- A. Multi-path
- B. System Throughput

- C. Types of Interference D. Range Considerations

XI. Wireless LAN Security

- A. Wired Equivalent Privacy (WEP) B. Attacks on Wireless LANs
- C. Emerging Security Solutions
- D. Corporate Security Policy
- E. Security Recommendations

Q. **LABORATORY OUTLINE: N/A**