MASTER SYLLABUS

CITA 380 – Integrated Programming for Engineers

Created by: Tatsuhito Koya, Ph.D.
Updated by: Tatsuhito Koya, Ph.D.
A. **TITLE:** Integrated Programming for Engineers

B. **COURSE NUMBER:** CITA 380

C. **CREDIT HOURS:** (Hours of Lecture, Laboratory, Recitation, Tutorial, Activity)

Credit Hours: 3
Lecture Hours: 2 per week
Lab Hours: per week
Other: 2 hours recitation per week

Course Length: 15 Weeks

D. **WRITING INTENSIVE COURSE:** No

E. **GER CATEGORY:** None

F. **SEMESTER(S) OFFERED:** Spring

G. **COURSE DESCRIPTION:** This course develops methodologies and techniques for program creation and implementation to solve mathematical and engineering problems. The students will be exposed to solving mathematical problems such as simultaneous equations and to performing engineering data acquisition from local sources as well as remote sources using high-level programming languages, scripting languages, and commercial off-the-shell products such as MATLAB.

H. **PRE-REQUISITES/CO-REQUISITES:**

a. Pre-requisite(s): CITA 220, ENGS 203, MATH 263
b. Co-requisite(s): None
c. Pre- or co-requisite(s): None

I. **STUDENT LEARNING OUTCOMES:**

<table>
<thead>
<tr>
<th>Course Student Learning Outcome [SLO]</th>
<th>PSLO</th>
<th>ISLO</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Translate and solve mathematical and engineering problems into computer programs</td>
<td>1. Ability to apply mathematics, science and engineering principles.</td>
<td>2 [CA] 5</td>
</tr>
<tr>
<td>b. Test, debug, and validate programs.</td>
<td>2. Ability to design and conduct experiments, analyze and interpret data</td>
<td>2 [CA] 5</td>
</tr>
<tr>
<td>c. Create programs that produce and consume resources on networks</td>
<td>3. Ability to design a system, component, or process to meet desired needs.</td>
<td>2 [CA] 5</td>
</tr>
<tr>
<td>d. Create programs that store, retrieve, and manipulate data in databases</td>
<td>3. Ability to design a system, component, or process to meet desired needs.</td>
<td>2 [CA] 5</td>
</tr>
<tr>
<td>e. Create programs to control hardware</td>
<td>3. Ability to design a system, component,</td>
<td>2 [CA] 5</td>
</tr>
</tbody>
</table>
f. Document programs and create reports

<table>
<thead>
<tr>
<th>or process to meet desired needs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>7. Ability to communicate effectively.</td>
</tr>
<tr>
<td>1 O 5</td>
</tr>
</tbody>
</table>

J. **APPLIED LEARNING COMPONENT:** Yes _X_ No ______

M. **EQUIPMENT:** Computer lab

N. **GRADING METHOD:** A-F

O. **SUGGESTED MEASUREMENT CRITERIA/METHODS:**
 - Exams
 - Quizzes
 - Assignments
 - Participation

P. **DETAILED COURSE OUTLINE:**
 I. Solving Engineering and Mathematical Problems
 A. Solving Mathematical Problems
 a. Gaussian Elimination
 b. Differential Equation
 c. Numerical Integration
 B. Solving Engineering Problems Using Variational Methods
 a. Ritz Method
 b. Galerkin Method
 II. Creating Network Data Acquisition Programs
 A. Creating Network Client Programs for Different Media
 a. Ethernet
 b. Serial
 B. Creating TCP/IP Client
 a. Web Client
 b. FTP Client
 C. Controlling UDP/IP Client
 a. tftp Client
 D. Other Industrial Communication Standards
 a. OPC
 b. MODBUS

Q. **LABORATORY OUTLINE:** N/A !