STATE UNIVERSITY OF NEW YORK COLLEGE OF TECHNOLOGY CANTON, NEW YORK

MASTER SYLLABUS

COURSE NUMBER – COURSE NAME CIVL 317 – FLUID MECHANICS LAB

Created by: Joseph Reilly

Updated by: Adrienne C. Rygel

Canino School of Engineering Technology

Department: Civil and Construction Technologies

Semester/Year: Fall 2021

A. <u>TITLE</u>: Fluid Mechanics Lab

B. <u>COURSE NUMBER</u>: CIVL 317

C. <u>CREDIT HOURS</u>: 1 credit hour(s) per week for 15 weeks

One hour (50 minutes) of lecture per week

 \boxtimes Two to three hours of lab or clinical per week 2 hr lab

Two hours of recitation per week

40 hours of internship

D. <u>WRITING INTENSIVE COURSE</u>: Yes \Box No \boxtimes

E. <u>GER CATEGORY</u>: None: Yes: GER *If course satisfies more than one*: GER

F. <u>SEMESTER(S) OFFERED</u>: Fall Spring Fall & Spring

G. <u>COURSE DESCRIPTION</u>:

This laboratory course will provide experiential supplements to the Fluid Mechanics I lecture ENG 315; and experiential and computational activities which will demonstrate and investigate practical applications of fluid mechanics theories in the Civil Engineering realm.

H. <u>**PRE-REQUISITES</u>**: None \Box Yes \boxtimes If yes, list below:</u>

ENGS 315 Fluid Mechanics I

<u>CO-REQUISITES</u>: None Yes If yes, list below:

ENGS 315 Fluid Mechanics I

I. <u>STUDENT LEARNING OUTCOMES</u>: (see key below)

By the end of this course, the student will be able to:

Course Student Learning Outcome [SLO]	<u>Program Student Learning</u> <u>Outcome</u> [PSLO]	<u>GER</u> [If Applicable]	<u>ISLO & SUBSETS</u>	
Solve for resultant force and center of pressure on a submerged surface	2488 - SO 1, SO4 517 - SO 1, SO4		5-Ind, Prof, Disc, Know Skills ISLO ISLO	Subsets Subsets Subsets Subsets
Employ Bernoulli Energy Equation to solve for head, pressure or velocity for various fluid systems	2488 - SO 1, SO4 517 - SO 1, SO4		5-Ind, Prof, Disc, Know Skills ISLO ISLO	Subsets Subsets Subsets Subsets
Determine the head loss due to friction in a piping system	2488 - SO 1, SO4 517 - SO 1 SO4		5-Ind, Prof, Disc, Know Skills ISLO ISLO	Subsets Subsets Subsets Subsets
Compute the velocity and discharge in piping system systems	2488 - SO 1 517 - SO 1		5-Ind, Prof, Disc, Know Skills ISLO ISLO	Subsets Subsets Subsets Subsets
Compute the coefficient of discharge for flow devices such as venturi, weir and orifice.	2488 - SO1, SO4 517 - SO1, SO4		5-Ind, Prof, Disc, Know Skills ISLO ISLO	Subsets Subsets Subsets Subsets
Calculate discharge in open channels.	2488 - SO1, SO4 517 - SO1, SO4		5-Ind, Prof, Disc, Know Skills ISLO ISLO	Subsets Subsets Subsets Subsets

Design small sanitary or storm sewer system.	2488 - SO2 517 - SO2	2-Crit Think ISLO ISLO	PS Subsets Subsets
Drana ra a standard ranort	2488 502	1 Comm Skills	Subsets
	517 - SO3	ISLO ISLO	Subsets Subsets Subsets
Function effectively as a team member.	2488 - SO 5 517 - SO 5	4-Soc Respons ISLO ISLO	T Subsets Subsets Subsets
		ISLO ISLO ISLO	Subsets Subsets Subsets Subsets

KEY	Institutional Student Learning Outcomes [ISLO 1 – 5]		
ISLO	ISLO & Subsets		
#			
1	Communication Skills		
	Oral [O], Written [W]		
2	Critical Thinking		
	Critical Analysis [CA] , Inquiry & Analysis [IA] , Problem		
	Solving [PS]		
3	Foundational Skills		
	Information Management [IM], Quantitative Lit,/Reasoning		
	[QTR]		
4	Social Responsibility		
	Ethical Reasoning [ER], Global Learning [GL],		
	Intercultural Knowledge [IK], Teamwork [T]		
5	Industry, Professional, Discipline Specific Knowledge and		
	Skills		

*Include program objectives if applicable. Please consult with Program Coordinator

APPLIED LEARNING COMPONENT: J.

Yes 🖂 No

If YES, select one or more of the following categories:

- Classroom/Lab
- ☐ Internship
- Clinical Placement
- Practicum
- Service Learning
- Community Service
- Civic EngagementCreative Works/Senior Project
- Research
- Entrepreneurship
 - (program, class, project)

K. <u>TEXTS</u>:

CIVL 317 Laboratory Manual, SUNY Canton

L. <u>REFERENCES</u>:

The text used in ENGS 315 will serve as reference.

Gribbin, J. E. (2007). Introduction to Hydraulics and Hydrology, 3rd Edition. Clifton Park, NY: Thomson Delmar Learning. ISBN: 1418032956.

M. <u>EQUIPMENT</u>: None Needed: flow meters, weir, venturi meter, Bernoulii's Theorem apparatus, orifice and mouthpiece apparatus, renolds apparatus, and other flow related equipment, computer lab with hydraulic related software (e.g. civil 3D hydraflow hydrograph, ArcGIS Hydrogeology toolset)

N. <u>GRADING METHOD</u>: A - F

0. <u>SUGGESTED MEASUREMENT CRITERIA/METHODS</u>:

Computational Assignments, Lab Reports, Quizzes.

P. <u>DETAILED COURSE OUTLINE</u>:

N/A Lab course

Q. <u>LABORATORY OUTLINE</u>: None Yes

- Lab Topic (Order may vary)
- **1** Specific weight and density of water
- 2 Buoyancy
- **3 Piezometers and manometers**
- 4 **Resultant force from pressure on a vertical surface**
- 5 Resultant force from pressure on an inclined surface
- 6 Friction/head loss in a pipe
- 7 Calibration of a venturi meter
- 8 Calibration of sharp crested weirs
- 9 Pump Selection
- 10 Toricelli's Theorem
- 11 Pipe system design
- 12 Computer Assisted Hydraulic Design (StormCad or Civil 3D)
- **13** Flow measurement in a natural stream
- 14 Operation of Hydraulic Devices