STATE UNIVERSITY OF NEW YORK COLLEGE OF TECHNOLOGY CANTON, NEW YORK

MASTER SYLLABUS

COURSE NUMBER – COURSE NAME CMGT 380 – Construction Materials

Created by: Adrienne Rygel

Updated by:

Canino School of Engineering Technology

Department: Civil and Construction Technology

Semester/Year: Fall 2020

A.	<u>TITLE</u> : Construction Materials
В.	COURSE NUMBER: CMGT 380
С.	<u>CREDIT HOURS</u> : (Hours of Lecture, Laboratory, Recitation, Tutorial, Activity)
	# Credit Hours: 2 # Lecture Hours: 2 per week # Lab Hours: per week Other: per week
	Course Length: 15 Weeks
D.	WRITING INTENSIVE COURSE: Yes \(\subseteq \text{No } \subseteq \)
Е.	GER CATEGORY: None: Yes: GER If course satisfies more than one: GER
F.	SEMESTER(S) OFFERED: Fall ⊠ Spring ☐ Fall & Spring ☐
G.	COURSE DESCRIPTION:
utilizir includ	ourse examines properties, common applications and methods for properly selecting and agency the materials typically used in the constructed environment. The materials studied e aggregates, Portland cement concrete, masonry, and asphalt. Significant time will be to aggregate testing and data analysis for use in concrete and concrete mix design.
Н.	PRE-REQUISITES: None ☐ Yes ☒ If yes, list below:
15 cred	dits earned and MATH123 Pre-Calculus or higher; or permission of instructor
	<u>CO-REQUISITES</u> : None \square Yes \boxtimes If yes, list below:
CMGT	Γ 381 Construction Materials Laboratory

I. <u>STUDENT LEARNING OUTCOMES</u>: (see key below)

By the end of this course, the student will be able to:

Course Student Learning Outcome [SLO]	Program Student Learning Outcome [PSLO]	GER [If Applicable]	<u>ISLO & SUBSETS</u>	
a) Discuss the significant properties, preparation and applications of aggregate, concrete, asphalt and masonry in the constructed world.	SO 5		5-Ind, Prof, Disc, Know Skills ISLO ISLO	Subsets Subsets Subsets Subsets
b) Analyze and interpret results from aggregate tests (e.g. sieve analysis, unit weight, moisture content, specific gravity)	SO 3 and 5		5-Ind, Prof, Disc, Know Skills ISLO ISLO	Subsets Subsets Subsets Subsets
c) Prepare a mix design for concrete.	SO 5		5-Ind, Prof, Disc, Know Skills ISLO ISLO	Subsets Subsets Subsets Subsets
d) Explain the types of fresh concrete tests used for quality control (e.g. slump/spread test, unit weight, temperature, air content)	SO 5		5-Ind, Prof, Disc, Know Skills ISLO ISLO	Subsets Subsets Subsets Subsets
e) Explain methods for proper placement, finishing, and curing of concrete.	SO 5		5-Ind, Prof, Disc, Know Skills ISLO ISLO	Subsets Subsets Subsets Subsets
f) Explain the types of hardened concrete tests and interpret test results (e.g. compressive and tensile strength tests).	SO 5		5-Ind, Prof, Disc, Know Skills ISLO ISLO	Subsets Subsets Subsets Subsets
g) Discuss types, application, and testing associated with masonry units.	SO 5		5-Ind, Prof, Disc, Know Skills ISLO ISLO	Subsets Subsets Subsets Subsets
h.) Discuss types, application, and testing associated with hot asphalt in highway engineering.	SO 5		5-Ind, Prof, Disc, Know Skills ISLO ISLO	Subsets Subsets Subsets Subsets
i. Compose an Engineering Research Report regarding a construction topic using appropriate syntax and grammar.	SO 1		1-Comm Skills ISLO ISLO	W Subsets Subsets Subsets
j. Prepare and present an oral presentation regarding a construction topic with appropriate visual aids.	SO 1		1-Comm Skills ISLO ISLO	O Subsets Subsets Subsets

KEY	Institutional Student Learning Outcomes [ISLO 1 – 5]
ISLO	ISLO & Subsets
#	
1	Communication Skills
	Oral [O], Written [W]
2	Critical Thinking
	Critical Analysis [CA] , Inquiry & Analysis [IA] , Problem
	Solving [PS]
3	Foundational Skills
	Information Management [IM], Quantitative Lit,/Reasoning
	[QTR]
4	Social Responsibility
	Ethical Reasoning [ER], Global Learning [GL],
	Intercultural Knowledge [IK], Teamwork [T]
5	Industry, Professional, Discipline Specific Knowledge and
	Skills

^{*}Include program objectives if applicable. Please consult with Program Coordinator

J. <u>APPLIED LEARNING COMPO</u>	<u>IENT:</u>	Yes 🔀	No 🔛
If YES, select one or more of the fol	lowing categor	ries:	
Classroom/Lab Internship Clinical Placement Practicum Service Learning Community Service			
☐ Civic Engagement ☐ Creative Works/Senior Project ☐ Research ☐ Entrepreneurship (program, class, project)			

K. $\underline{\text{TEXTS}}$:

Mamlouk, Michael S. and Zaniewski, John P. (2017). Materials for Civil and Construction Engineers, 4th edition, Pearson Publishing.

L. <u>REFERENCES</u>:

Portland Cement Association Material Handbook

- M. <u>EQUIPMENT</u>: None ⊠ Needed:
- N. **GRADING METHOD**: A-F

O. <u>SUGGESTED MEASUREMENT CRITERIA/METHODS</u>:

Assignments, Exams, In-Class Exercises and Quizzes, Written Report(s), and Oral Presentation(s)

P. DETAILED COURSE OUTLINE:

- I. Introduction and Overview
- II. Aggregates
 - A. Sources
 - B. Uses
 - **D. Properties**
 - E. Testing
 - F. Handling
- III. Portland Cement
 - A. Production
 - **B.** Chemistry
 - C. Types of cement
- **IV.** Portland Cement Concrete
 - A. Water
 - **B.** Admixtures
 - C. Proportioning mixes
 - **D. Fresh Concrete Tests for Quality Control**
 - E.Mixing placing and handling
 - F. Curing
 - G. Properties of hardened concrete
 - H. Testing of hardened concrete
 - I. Modern alternatives and innovations
- V. Masonry
 - A. CMUS
 - **B.** Clay bricks
 - C. Mortar

- D. Grout
- E. Plaster
- VI. Asphalt Binders and Mixtures
 - A. Types and uses of Asphalt
 - **B.** Thermal and chemical considerations
 - C. Performance characterization
 - **D.** Classifications of asphalt
 - E. Asphalt concrete
 - F. Mix Design
 - **G.** Characterization
 - H. Production
 - I. Recycling
 - J. Additives

Q. EMBORITORI OCTEMBE TONE TEST	Q.	LABORATORY	OUTLINE :	None 🔀	Yes	
---------------------------------	----	-------------------	------------------	--------	-----	--