STATE UNIVERSITY OF NEW YORK COLLEGE OF TECHNOLOGY CANTON, NEW YORK

COURSE OUTLINE

CONS 220 / MECH 220 – ENGINEERING MATERIALS

Prepared By: Daniel J. Miller Revised By: Cullen L. Haskins (5/11/2015)

> CANINO SCHOOL OF ENGINEERING TECHNOLOGY ENGINEERING TECHNOLOGY DEPARTMENT May 2015

- A. <u>TITLE</u>: Engineering Materials
- B. <u>COURSE NUMBER</u>: CONS 220 OR MECH 220

C. <u>CREDIT HOURS</u>: 3

D. <u>WRITING INTENSIVE COURSE</u>: Yes

This is a designated writing intensive course for the 2 year and 4 year Mechanical Engineering Technology and 4 year Civil Engineering Technology programs.

E. <u>COURSE LENGTH</u>: 15 weeks

F. <u>SEMESTER(S) OFFERED</u>: Spring

G. <u>HOURS OF LECTURE, LABORATORY, RECITATION, TUTORIAL,</u> <u>ACTIVITY</u>:

2-1 hour lectures / recitation, 1- 3 hour lab per week

H. <u>CATALOG DESCRIPTION</u>:

A study of the wide spectrum of materials used in manufacturing of discrete parts and machines. Materials structure, characteristics, mechanical properties and applications will be stressed for ferrous and non-ferrous metals, plastics, and composites. Two hours lecture, three hours laboratory per week.

I. <u>PRE-REQUISITES/CO-REQUISITES</u>: MATH123, PHYS 121, or permission of instructor

J. <u>GOALS (STUDENT LEARNING OUTCOMES)</u>:

By the end of this course, the student will be able to:

Course Objective	Institutional SLO
a. apply standard testing procedures to measure,	1. Communication Skills
collect and interpret laboratory data for material	2. Critical Thinking Skills
testing in a team environment;	3. Professional Competence
	4. Inter/Intrapersonal Skills
b. determine and identify the mechanical	3. Professional Competence
properties of material;	
c. identify material property-processing	2. Critical Thinking Skills
interactions related to heat treatment, cold	3. Professional Competence
working, and hot forming;	-
d. select the best material (metal, polymer,	2. Critical Thinking Skills
ceramics or composite) for a particular	3. Professional Competence
application;	-
e. appraise materials in terms of degradation,	2. Critical Thinking Skills
oxidation, corrosion, and failure; and	3. Professional Competence
f. write laboratory reports that are clear, well	1. Communication Skills
organized, and professionally accepted.	2. Critical Thinking Skills
	3. Professional Competence

K. <u>TEXTS</u>: Callister, William D. *Fundamentals of Materials Science and Engineering: An Integrated Approach*. 4nd ed. Hoboken, NJ: John Wiley & Sons, 2012. Print. ISBN-10: 9781118061602

L. <u>REFERENCES</u>:

Tool and Manufacturing Engineers Handbook, Society of Manufacturing Engineers

Heat Treating, Metals Handbook, Vol. 4 ASM International

Introduction to Physical Metallurgy, Avner, McGraw-Hill General Dynamics series on non-destructive testing.

American Welding Society series on nondestructive testing, Van Vlack.

Elements of Materials Science and Engineering, Addison-Wesley

M. EQUIPMENT: Materials test lab (Nevaldine South 110), Computer Lab

N. **<u>GRADING METHOD</u>**: A-F

N. <u>MEASUREMENT CRITERIA/METHODS</u>:

- Homework
- Quizzes
- Exams
- Lab Activities with written reports

P. <u>DETAILED COURSE OUTLINE</u>: (must use the outline format listed below)

- I. Introduction to Materials in Manufacturing
- II. The Nature and Structure of Materials
 - A. Atomic Structure
 - B. Atomic Bonding
 - C. Atomic Arrangement
- III. Mechanical Properties of Materials
 - A. Mechanical
 - B. Strain Hardening and Annealing
- IV. Structure of Materials
 - A. Ferrous Metals and Alloys
 - B. Nonferrous Metals and Alloys
 - C. Polymers
 - D. Composites
 - E. Wood
- V. Degradation, Oxidation and Corrosion of Materials
 - A. Corrosion
 - B. Oxidation
 - C. Wear

Q. <u>LABORATORY OUTLINE</u>:

- I. Lab Orientation and Lab Report Template Preparation
- II. Unit Cell and Lattice Structures

- III. Mechanical Properties and Selection: Polymers and Metals
- IV. Tensile Test of Steel and Aluminum
- V. Tensile Test of Cast Iron and Plastic
- VI. Shear Testing of Steel, Brass, and Aluminum
- VII. Effects of Cold Working
- VIII. Impact Testing of Steel
- IX. Fatigue Calculations
- X. Jominy End Quench (Hardenability) of 1018, 1095, and 4140 Steels
- XI. Metallography
- XII. Heat Treatment and Tensile Test of Tool Steel