STATE UNIVERSITY OF NEW YORK COLLEGE OF TECHNOLOGY CANTON, NEW YORK

MASTER SYLLABUS

COURSE NUMBER – COURSE NAME CONS 111 – Commercial Structures

Created by: J. Reilly

Updated by: A. Reiter

Canino School of Engineering Technology

Department: Civil and Environmental Technology

Semester/Year: Fall 2018

A. TITLE: Commercial Structures

B. COURSE NUMBER: CONS 111

C. CREDIT HOURS: (Hours of Lecture, Laboratory, Recitation, Tutorial, Activity)

Credit Hours: 3
Lecture Hours: 2 per week
Lab Hours: 3 per week
Other: per week

Course Length: 15 Weeks

D. <u>WRITING INTENSIVE COURSE</u>: Yes \square No \boxtimes

E. <u>GER CATEGORY</u>: None: Yes: GER *If course satisfies more than one*: GER

F. <u>SEMESTER(S) OFFERED</u>: Fall Spring Kall & Spring

G. <u>COURSE DESCRIPTION</u>:

The study of construction materials, practices, equipment and terminology used in commercial construction. Lectures and laboratory periods develop theory and practice in excavation; foundation formwork; masonry walls; concrete; erection of steel frame buildings; commercial wall and roof systems; and interior and exterior wall finishes. Field trips to be arranged when practical

H. <u>PRE-REQUISITES</u>: None Yes If yes, list below:

<u>CO-REQUISITES</u>: None Yes If yes, list below:

I. <u>STUDENT LEARNING OUTCOMES</u>: (see key below)

By the end of this course, the student will be able to:

Course Student Learning Outcome [SLO]	<u>Program Student Learning</u> <u>Outcome</u> [PSLO]	<u>GER</u> [If Applicable]	<u>ISLO & SUBSETS</u>	
a. Explain the major elements involved in the process of constructing a building including options and concerns associated with foundations, structural frames and walls, exterior finish (cladding), interior walls and finish, and roofs.	<u>[15L0]</u>		5-Ind, Prof, Disc, Know Skills ISLO ISLO	Subsets Subsets Subsets Subsets
b. Discuss the properties and assembly techniques of the materials (steel, masonry, concrete) commonly used in construction of non-residential buildings.			5-Ind, Prof, Disc, Know Skills ISLO ISLO	Subsets Subsets Subsets Subsets
c. Perform calculations associated with construction planning and material estimating. This includes the use of English and SI systems, length conversions, area and volume calculations			5-Ind, Prof, Disc, Know Skills ISLO ISLO	Subsets Subsets Subsets Subsets
d. Communicate using an extensive vocabulary of construction terms and phrases common to the industry			5-Ind, Prof, Disc, Know Skills 1-Comm Skills ISLO	Subsets O Subsets Subsets
			ISLO ISLO ISLO	Subsets Subsets Subsets Subsets

ISLO ISLO ISLO	Subsets Subsets Subsets Subsets
ISLO ISLO ISLO	Subsets Subsets Subsets Subsets

KEY	Institutional Student Learning Outcomes [ISLO 1 – 5]		
ISLO	ISLO & Subsets		
#			
1	Communication Skills		
	Oral [O], Written [W]		
2	Critical Thinking		
	Critical Analysis [CA]. Inquiry & Analysis [IA]. Problem		
	Solving [PS]		
3	Foundational Skills		
	Information Management [IM], Quantitative Lit,/Reasoning		
	[QTR]		
4	Social Responsibility		
	Ethical Reasoning [ER], Global Learning [GL],		
	Intercultural Knowledge [IK], Teamwork [T]		
5	Industry, Professional, Discipline Specific Knowledge and		
	Skills		

*Include program objectives if applicable. Please consult with Program Coordinator

J. <u>APPLIED LEARNING COMPONENT:</u>

Yes 🛛 No 🗌

If YES, select one or more of the following categories:

Classroom/LabCivic EngagementInternshipCreative Works/Senior ProjectClinical PlacementResearchPracticumEntrepreneurshipService Learning(program, class, project)Community ServiceCommunity Service

K. <u>TEXTS</u>:

Principles and Practices of Commercial Construction 6th Ed, Andres and Smith, Prentice Hall

L. <u>REFERENCES</u>:

Engineering News Record, Civil Engineering, Concrete Construction, Modern Steel Construction

M. <u>EQUIPMENT</u>: None Needed:

N. **<u>GRADING METHOD</u>**: A-F

O. <u>SUGGESTED MEASUREMENT CRITERIA/METHODS</u>:

- Exams
- Quizzes
- Home Assignments
- Lab: Participation and assignments
- Field Trips required

P. <u>DETAILED COURSE OUTLINE</u>:

I. Introduction to the Building Process

- 1. Feasibility of designs
- 2. Choosing a building system
- 3. The work of the design professional
- 4. Involvement of the building codes
- 5. The role of specifications and their divisions in the building process

II. Foundations and Site Work

- 1. Foundation loads
- 2. Foundation settlement
- 3. Soil types and properties
- 4. Excavation and support
- 5. Shallow (spread) foundations

6. Deep (pile) foundations

- 7. Dewatering
- III. Concrete Construction
 - 1. History
 - 2. Cement and aggregate
 - 3. Mixing
 - 4. Formwork
- 5. Placement
 - 6. Reinforcing
 - 7. Prestressing and posttensioning
 - 8. Problems in concrete quantities
- IV. Masonry Construction
 - 1. History
 - 2. Mortar
 - 3. Brick masonry
 - 4. Concrete block masonry
- 5. Stone masonry
 - 6. Construction techniques
- V. Structural Steel Frame Construction
 - 1. History of steel and metals in construction
 - 2. Steel, the material
 - 3. Details of steel framing
 - 4. The fabrication and erection process
 - 5. Fireproofing of steel framing
 - 6. Longer spans in steel
- VI. Interior Walls and Partitions
 - 1. Types of interior walls
 - 2. Framed partition systems (steel studs)
 - 3. Masonry partitions
 - 4. Wall and partition facings (gypsum board)
- VII. Roofing
 - 1. Low-slope (Aflat@) roofs
- 2. Components of roof systems
 - 2. Roofing and the building codes
- VIII. Exterior Finish and Cladding
 - 1. The glass process and design
 - 2. Design requirements for cladding
 - 3. Watertightness in cladding
 - 4. Curtain wall design
 - 5. Energy requirements

Q. <u>LABORATORY OUTLINE</u>: None Yes X

- 1. Introduction lab safety/length measure and units conversion.
- 2. Practice layout of small commercial building for excavation of foundation.

- 3. Area and volumes computations
- 4. Fundamentals of concrete mixing and quality testing
- 5. Form work comparison between manufactured and job built forms.
- 6. Compressive tests and strength analysis in concrete
- 7. Masonry construction walking tour of Canton.
- 8. Field Trip TBD
- 9. Masonry construction layout and construct block foundation wall.
- **10.** Erect steel frame building
- 11. Field Trip Steel Fabricator
- 12. Wall framing using metal studs
- 13. Interior finish on metal studs with hollow metal frames and sheetrock
- 14. Blueprint Reading construction systems
- 15. Review for Final Exam