STATE UNIVERSITY OF NEW YORK COLLEGE OF TECHNOLOGY CANTON, NEW YORK

MASTER SYLLABUS

COURSE NUMBER – COURSE NAME CONS 304 – REINFORCED CONCRETE DESIGN

Created by: Robert R Blickwedehl

Updated by: Yilei Shi

Canino School of Engineering Technology

Department: Civil and Construction Technology

Semester/Year: Spring 2021

Α.	TITLE: Reinforced Concrete Design
В.	COURSE NUMBER: CONS 304
C.	CREDIT HOURS: 3 credit hour(s) per week for 15 weeks
D.	WRITING INTENSIVE COURSE: Yes ☐ No ☒
Е.	GER CATEGORY: None: Yes: GER If course satisfies more than one: GER
F.	$\underline{SEMESTER(S)OFFERED};Fall\squareSpring\boxtimesFall\&Spring\square$
G.	COURSE DESCRIPTION:
method current and spr	course, the fundamentals of cast-in-place reinforced concrete design by the strength design d are introduced. Students design slabs, beams, girders, columns and footings in accordance with a version of American Concrete Institute Code 318. Computations are done by manual methods readsheets. Students are introduced to design software. A design of elements of a small multi-ommercial building is incorporated into the class.
Н.	PRE-REQUISITES: None ☐ Yes ☒ If yes, list below:
	336 (Structural Analysis), CIVL 339 (Structural Analysis Lab), and CONS 280 (Civil tering Materials)
	CO-REQUISITES : None \square Yes \boxtimes If yes, list below:
CIVL	339 (Structural Analysis Lab) could be taken concurrently with this class.

I. <u>STUDENT LEARNING OUTCOMES</u>: (see key below)

By the end of this course, the student will be able to:

Course Student Learning Outcome [SLO]	Program Student Learning Outcome [PSLO]	GER [If Applicable]	ISLO & SUBSETS	
a) Analyze and design a reinforced concrete slab			2-Crit Think 5-Ind, Prof, Disc, Know Skills ISLO	Subsets Subsets Subsets Subsets
b) Analyze and design reinforced concrete beam (rectangular and tee-beam)			2-Crit Think 5-Ind, Prof, Disc, Know Skills ISLO	Subsets Subsets Subsets Subsets
c) Analyze and design a reinforced concrete girder			2-Crit Think 5-Ind, Prof, Disc, Know Skills ISLO	Subsets Subsets Subsets Subsets
d) Detail shear reinforcement for beams			5-Ind, Prof, Disc, Know Skills ISLO ISLO	Subsets Subsets Subsets Subsets
e) Detail splices and anchorages for reinforcement			5-Ind, Prof, Disc, Know Skills ISLO ISLO	Subsets Subsets Subsets Subsets

KEY	Institutional Student Learning Outcomes [ISLO 1 – 5]				
ISLO	ISLO & Subsets				
#					
1	Communication Skills				
	Oral [O], Written [W]				
2	Critical Thinking				
	Critical Analysis [CA], Inquiry & Analysis [IA], Problem				
	Solving [PS]				
3	Foundational Skills				
	Information Management [IM], Quantitative Lit,/Reasoning				
	[QTR]				
4	Social Responsibility				
	Ethical Reasoning [ER], Global Learning [GL],				
	Intercultural Knowledge [IK], Teamwork [T]				
5	Industry, Professional, Discipline Specific Knowledge and				
	Skills				

^{*}Include program objectives if applicable. Please consult with Program Coordinator

J.	APPLIED LEARNING COMPONENT:	Y es 🔛	No 🔀
	If YES, select one or more of the following catego	ries:	
	☐ Classroom/Lab ☐ Internship ☐ Clinical Placement ☐ Practicum ☐ Service Learning ☐ Community Service		
	☐ Civic Engagement ☐ Creative Works/Senior Project ☐ Research ☐ Entrepreneurship (program, class, project)		

K. TEXTS:

Darwin, D., Dolan, C., Nilson, A. (2016) Design of Concrete Structures, 15th Edition. New York, NY: McGraw Hill Education. ISBN: 978-0-07-339794-8.

L. <u>REFERENCES</u>:

Current Building Code Requirements for Structural Concrete and Commentary. American Concrete Institute.

- M. <u>EQUIPMENT</u>: None \boxtimes Needed:
- N. GRADING METHOD: A-F
- O. <u>SUGGESTED MEASUREMENT CRITERIA/METHODS</u>:
- Exams
- Quizzes
- Design Project(s)
- Homework

P. <u>DETAILED COURSE OUTLINE</u>:

- I. Introduction
- A. Concrete and Reinforced Concrete as a material
- B. Advantages and Disadvantages of Structural Concrete
- C. ACI Code
- D. Reinforcing Steel
- E. Concrete Mix Materials
- F. Dead and Live Loads
- **II. Fundamental Principles of Bending**
- A. Behavior of a concrete beam in flexure
- B. Analysis of unreinforced beam by the flexure formula
- C. The internal couple method of analysis
- D. The strength design method for composite material
- III. Analysis and Design of Rectangular Reinforced Concrete Beams
- A. Balanced, Over-reinforced, and Under-reinforced Beams
- B. Criteria for a tension controlled section
- C. Detailing requirements
- D. Load Factors
- E. Strength reduction factors and the maximum practical moment
- F. Rectangular Beam Analysis for Moment (Tension Reinforcement only)
- G. Rectangular Beam Design for Moment (Tension Reinforcement only)
- IV. Slabs
- A. Slab nomenclature

- B. ACI Criteria for one way slabsC. Slab analysisD. Slab designE. Design of slabs on grade
- V. Tee Beams
- A. Tee Beam Analysis for Moment (Tension Reinforcement only)
- B. Tee Beam Design for Moment (Tension Reinforcement only)
- C. Design of compression steel
- VI. Girder Design
- A. Introduction
- B. Calculation of shears and bending moments
- C. Girder design
- VII. Design of Shear Reinforcement in Beams
- A. Introduction
- B. Analysis of beams with no shear reinforcement
- C. ACI Code requirements for shear steel
- D. Shear Reinforcement Design Procedure
- E. Design for torsion
- VIII. Development Length Introduction
- A. Development Length Tension Bars
- B. Development Length Standard Hooks in Tension
- C. Development of Web Reinforcement
- **D. Splices**
- E. Cutoff of tension bars
- F. Design of additional shear reinforcing in zones where tension bars are terminated
- IX. Column Design
- A. Introduction
- B. Strength of Reinforced Concrete Columns Small Eccentricity
- C. Code Requirements Concerning Column Details
- D. Analysis of Short Columns Small Eccentricity
- E. Design of Short Columns Small Eccentricity
- F. Eccentrically loaded columns
- X. Footings
- A. Introduction
- **B. Design of Square Reinforced Concrete Footings**
- Q. LABORATORY OUTLINE: None \boxtimes Yes \square