STATE UNIVERSITY OF NEW YORK COLLEGE OF TECHNOLOGY CANTON, NEW YORK

MASTER SYLLABUS

COURSE NUMBER – COURSE NAME CONS 485 – Solid Waste Management

Created by: Adrienne C. Rygel

Updated by: Adrienne C. Rygel

Canino School of Engineering Technology

Department: Civil and Construction Technology

Semester/Year: Fall 2018

A. <u>TITLE</u>: Solid Waste Management

B. <u>COURSE NUMBER</u>: CONS 485

C. <u>CREDIT HOURS</u>: (Hours of Lecture, Laboratory, Recitation, Tutorial, Activity)

Credit Hours: 3 # Lecture Hours: 3 per week # Lab Hours: per week Other: per week

Course Length: 15 Weeks

D. <u>WRITING INTENSIVE COURSE</u>: Yes \square No \boxtimes

E. <u>GER CATEGORY</u>: None: Yes: GER *If course satisfies more than one*: GER

F. <u>SEMESTER(S) OFFERED</u>: Fall Spring Fall & Spring

G. <u>COURSE DESCRIPTION</u>:

This course will introduce students to the governing, management, science, and engineering that impacts solid waste. The role of the federal government in the management of municipal solid waste is discussed, in conjunction with state solid waste legislation. Different types of solid waste streams (e.g. household waste, construction and demolition waste) and their characteristics will be examined. Students learn how to plan municipal solid waste management programs. A significant portion of the course will be spent on solid waste landfill engineering and design (e.g. liner systems, covers, leachate collection and treatment systems, groundwater flow and monitoring, gas migration and collection). Construction and operational principles of landfills are discussed. Opportunities for reduction, reuse, and recycling of solid waste are discussed as one solid waste management technique.

H. <u>PRE-REQUISITES</u>: None Yes X If yes, list below:

CONS 385 (Hydrology and Hydrogeology) and CONS 216 (Soils and Foundations); or permission from the instructor

<u>CO-REQUISITES</u>: None Yes If yes, list below:

I. <u>STUDENT LEARNING OUTCOMES</u>: (see key below)

By the end of this course, the student will be able to:

<u>Course Student Learning Outcome</u> [SLO]	<u>Program Student Learning</u> <u>Outcome</u> [PSLO]	<u>GER</u> [If Applicable]	<u>ISLO & SUBSETS</u>	
1. Conduct mass balance analyses of contaminant migration in landfills	2488: 1a, 2ab, 6b		5-Ind, Prof, Disc, Know Skills ISLO ISLO	Subsets Subsets Subsets Subsets
2. Design landfill cover systems	2488: 1a, 4b		5-Ind, Prof, Disc, Know Skills ISLO ISLO	Subsets Subsets Subsets Subsets
3. Design landfill liner systems	2488: 1a, 4b		5-Ind, Prof, Disc, Know Skills ISLO ISLO	Subsets Subsets Subsets Subsets
4. Design leachate collection and treatment systems technology problem	2488: 1a, 4b		5-Ind, Prof, Disc, Know Skills ISLO ISLO	Subsets Subsets Subsets Subsets
5. Design landfill gas collection and recovery systems	2488: 1a, 4b		5-Ind, Prof, Disc, Know Skills ISLO ISLO	Subsets Subsets Subsets Subsets
6. Design groundwater monitoring systems	2488: 1a, 4b		5-Ind, Prof, Disc, Know Skills ISLO ISLO	Subsets Subsets Subsets Subsets

7. Prepare groundwater monitoring programs	2488: 1a, 4b	5-Ind, Prof, Disc, Know Skills ISLO ISLO Subsets Subsets Subsets
8. Interpret solid waste regulations	2488: 1a	5-Ind, Prof, Disc, Know Skills ISLO ISLO Subsets Subsets Subsets
		ISLO Subsets ISLO Subsets ISLO Subsets Subsets
		ISLO Subsets ISLO Subsets ISLO Subsets Subsets

KEY	Institutional Student Learning Outcomes [ISLO 1 – 5]		
ISLO	ISLO & Subsets		
#			
1	Communication Skills		
	Oral [O], Written [W]		
2	Critical Thinking		
	Critical Analysis [CA], Inquiry & Analysis [IA], Problem		
	Solving [PS]		
3	Foundational Skills		
	Information Management [IM], Quantitative Lit,/Reasoning		
	[QTR]		
4	Social Responsibility		
	Ethical Reasoning [ER], Global Learning [GL],		
	Intercultural Knowledge [IK], Teamwork [T]		
5	Industry, Professional, Discipline Specific Knowledge and		
	Skills		

*Include program objectives if applicable. Please consult with Program Coordinator

J. <u>APPLIED LEARNING COMPONENT:</u>

Yes 🛛 No 🗌

If YES, select one or more of the following categories:

Classroom/Lab
Internship
Clinical Placement
Practicum
Service Learning
Community Service
Clinical Placement
Creative Works/Senior Project
Research
Entrepreneurship
(program, class, project)

K. <u>TEXTS</u>:

McBean, Edward A., Rovers, Frank A., and Farquhar, Grahame J. (1995). Solid Waste Landfill Engineering and Design. Upper Saddle River, New Jersey: Prentice Hall PTR.

L. <u>REFERENCES</u>:

• Shah, Kanti L. (2000). Basics of Solid and Hazardous Waste Management Technology. Upper Saddle River, New Jersey: Pearson Prentice Hall.

• Tchobanoglous, George and Kreith, Frank (2002). Handbook of Solid Waste Management, 2nd edition. New York, New York: McGraw Hill.

• McCarthy, David F. (2007). Essentials of Soil Mechanics and Foundations: Basic Geotechnics, 7th edition. Upper Saddle River, New Jersey: Pearson Prentice Hall.

• Coduto, Conald P. (1999). Geotechnical Engineering: Principles and Practice, 1st edition. Upper Saddle River, New Jersey: Pearson Prentice Hall.

M. <u>EQUIPMENT</u>: None Needed:

N. **<u>GRADING METHOD</u>**: A-F

O. <u>SUGGESTED MEASUREMENT CRITERIA/METHODS</u>:

- Examinations,
- Homework assignments,
- In-class exercises,
- Quizzes

P. <u>DETAILED COURSE OUTLINE</u>:

- I. Introduction
- II. Regulations Related to Solid Waste Management
- A. Federal Regulations
- **B.** New York State Regulations
- III. Composition of Solid Waste
- IV. Site-Selection for Solid Waste Facilities
- V. Principles of Decomposition in Landfills
- VI. Mass Balance Computational Procedures in Landfill Assessment

- VII. Water Balance Modeling For a Landfill
- VIII. Landfill Design
- A. Covers
- B. Liner Systems and Barriers
- C. Leachate Collection and Treatment Systems
- D. Landfill Gas Migration, Collection, and Recovery
- E. Groundwater Monitoring Systems
- F. Design for Natural Attenuation
- IX. Landfill Construction and Operation
- A. Cell Consturction and Operation
- B. Cover Materials and Frequency of Application
- C. Prevention of Precipitation Run-On
- D. Operational Control Considerations
- E. Site Life Span
- F. Site Operations and Control (e.g. odor, noise)
- X. Monitoring Programs
- A. Groundwater monitoring and regulation requirements
- B. Leachate monitoring and regulation requirements
- C. Gas monitoring and regulation requirements
- XI. Reduction Opportunities
- A. Reuse
- B. Recycling
- C. Composting

Q. <u>LABORATORY OUTLINE</u>: None X Yes