## STATE UNIVERSITY OF NEW YORK COLLEGE OF TECHNOLOGY CANTON, NEW YORK



# **MASTER SYLLABUS**

ECMR 102 – Electricity for Trades II

CIP Code: 46.0399

Created by: Michael J. Newtown, P.E. Updated by: Christopher Mayville

Canino School of Engineering Technology Mechanical Spring 2024

- A. TITLE: Electricity for Trades II
- B. COURSE NUMBER: ECMR 102
- C. CREDIT HOURS (Hours of Lecture, Laboratory, Recitation, Tutorial, Activity):

# Credit Hours: 3

# Lecture Hours: 3 per Week # Lab Hours: \_\_\_\_\_ per Week

Other \_\_\_ per Week

Course Length (# of Weeks): 15 weeks

- D. WRITING INTENSIVE COURSE: No
- E. GER CATEGORY:

Does the course satisfy more than one GER category? If so, which one? No

- F. SEMESTER(S) OFFERED: (Fall, Spring, or Fall and Spring) Spring
- G. COURSE DESCRIPTION: Continuation of Electricity for Trades I. Includes additional instruction in basic AC system theory, three-phase circuits, motors motor control, and transformer theory connections. Laboratory projects include diagnosing electrical equipment, motors motor starters, transformer connections, and raceway installations for Commercial Electrical applications.
- H. PRE-REQUISITES: Yes ECMR 101

CO-REQUISITES: Yes - Math 101 or Math 106

I. STUDENT LEARNING OUTCOMES: By the end of the course, the student will be able to:

| Course Student Learning Outcome [SLO]                 | <u>PSLO</u>                                               | <u>GER</u> | <u>ISLO</u>                                                         |
|-------------------------------------------------------|-----------------------------------------------------------|------------|---------------------------------------------------------------------|
| a. Explain the current flow for a given circuit       | 1. Install wiring systems                                 |            | 5. Industry, Professional, Discipline Specific Knowledge and Skills |
| b. Troubleshooting and analyzing motor circuit sizing | 3. Perform Routine Maintenance on motors and transformers |            | 5. Industry, Professional, Discipline Specific Knowledge and Skills |
| c. Troubleshooting and analyzing transformer circuits | 1. Install wiring systems                                 |            | 5. Industry,<br>Professional,                                       |

| d. Troubleshooting analyzing multi-pha |           | ts                                         | 1. Install wiring systems                                       |                         | Discipline Specific Knowledge and Skills  5. Industry, Professional, Discipline Specific Knowledge and Skills |
|----------------------------------------|-----------|--------------------------------------------|-----------------------------------------------------------------|-------------------------|---------------------------------------------------------------------------------------------------------------|
|                                        |           |                                            |                                                                 |                         |                                                                                                               |
|                                        |           |                                            |                                                                 |                         |                                                                                                               |
|                                        |           |                                            |                                                                 |                         |                                                                                                               |
|                                        | KEY       |                                            | Institutional Student 1                                         |                         |                                                                                                               |
|                                        | ISLO<br># |                                            | ISLO 3                                                          |                         |                                                                                                               |
|                                        | 1         | Communication Skills Oral [O], Written [W] |                                                                 |                         |                                                                                                               |
|                                        | 2         | Cr<br>Cr                                   | itical Thinking<br>itical Analysis [CA] , Ingoblem Solving [PS] | quiry & Analysis [IA] , |                                                                                                               |
|                                        | 3         |                                            | undational Skills                                               |                         |                                                                                                               |

Information Management [IM], Quantitative

Industry, Professional, Discipline Specific

Ethical Reasoning [ER], Global Learning [GL], Intercultural Knowledge [IK], Teamwork [T]

| J. | APPLIED LEARNING COMPONENT:                                                               | Yes_X No                                                                                                       |  |  |  |  |
|----|-------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|--|--|--|--|
|    | If Yes, select one or more of the following categories:                                   |                                                                                                                |  |  |  |  |
|    | Classroom/LabX Internship Clinical Practicum Practicum Service Learning Community Service | Civic Engagement<br>Creative Works/Senior Project<br>Research<br>Entrepreneurship<br>(program, class, project) |  |  |  |  |

Lit,/Reasoning [QTR]
Social Responsibility

**Knowledge and Skills** 

5

### K. TEXTS:

Hermon, Stephen. Delmar's standard Textbook of Electricity 6<sup>th</sup> Edition. Clifton Park: Cengage.

- L. REFERENCES: National Electric Code Book 2017
- M. EQUIPMENT: Supplied by college motors, transformers, conduit benders, motor starters and electrical conductors.
- N. GRADING METHOD: A-F
- O. SUGGESTED MEASUREMENT CRITERIA/METHODS:
  - Exams
  - Quizzes
  - Papers
  - Attendance

### P. DETAILED COURSE OUTLINE:

- I. Alternating Current Principles
- A. A-C Power
- 1) Three Phase
- 2) Single Phase
- II. Polyphase Circuits
- A. Introduction to Delta Connections
- 1) How coils are connected in Delta
- 2) Meaning of the term Delta
- B. Current relationships in a Delta Connection
- C. KVA Capacity of a Delta Connection
- D. Closed Delta Transformer Bank
- 1) Connection of primary & secondary windings
- E. Single Phase Transformers Connected in WYE
- 1) How coils are connected in wye
- 2) Meaning of term wye
- F. Wye-Wye Connected Transformer Banks
- **G.** Delta-Wye Connected Transformer Banks
- **III.** Transformers
- A. Applications of Transformers
- **B.** Construction Of Transformers
- C. Elementary Principles of Transformers
- D. Polarity
- **E.** Single Phase Connections
- F. Transformer Cooling
- **IV.** Single Phase Motors
- A. Construction of Split Phase Motor
- B. Principles of Operation of Split Phase Motor

- C. Principles of Operation of Capacitor Start Motor
- V. Three Phase Motors
- A. Construction of Motor
- **B.** Principle of Operation
- C. Rotor Field
- **D.** Stator Windings
- **E.** Starting Current
- F. Reversing Rotation
- VI. A-C Motor Controls
- A. Starting Squirrel Cage Motors
- **B.** Across the Line Magnetic Motor Starters
- C. Motor Reversing
- VII. System and Equipment Grounding
- A. Grounding Defined
- **B.** Definition of Voltage to Ground
- C. Identification of Grounded Conductors
- D. Methods of Equipment Grounding
- **VIII.** Conductors and Raceways
- A. Conductor insulation
- **B.** Effects of Heat on Conductors
- C. Conductor Material
- **D.** Overcurrent Protection
- E. Fuses and Circuit Breakers
- F. Voltage Drop Calculations
- **G.** Function of Raceways
- H. Types of Raceways

## VIIII. Lighting

- A. Incandescent
- B. LED
- C. Vapor Lamp
- D. Fluorescent Lamp
- E. Illumination
- IX. Commercial Electrical System
- A. Generating Station to Substation
- **B.** Distribution of Power
- **C.** Service Entrance Equipment
- D. Feeders and Sub feeders
- E. Branch Circuits
- Q. LABORATORY OUTLINE: None