STATE UNIVERSITY OF NEW YORK COLLEGE OF TECHNOLOGY CANTON, NEW YORK

MASTER SYLLABUS

ECMR 104 - Electricity for Trades II Lab

CIP Code: 46.0399

Created by: Michael J. Newtown, P.E.

Updated by:

- A. TITLE: Electricity for Trades II Lab
- B. COURSE NUMBER: ECMR 104
- C. CREDIT HOURS (Hours of Lecture, Laboratory, Recitation, Tutorial, Activity):
 - # Credit Hours: 4
 # Lecture Hours
 # Lab Hours 4 (2) hours per week
 Other ____ per Week

Course Length (# of Weeks): 15 weeks

- D. WRITING INTENSIVE COURSE: No
- E. GER CATEGORY:

Does the course satisfy more than one GER category? If so, which one? No

- F. SEMESTER(S) OFFERED: (Fall, Spring, or Fall and Spring) Spring
- G. COURSE DESCRIPTION: Continuation of Electricity for Trades I. Includes additional instruction in basic AC system theory, three phase circuits, motors motor control, transformer theory connections. Laboratory projects include diagnosis of electrical equipment, motors motor starters, transformer connections and raceway installations for Commercial Electrical applications.
- H. PRE-REQUISITES: Yes ECMR 103CO-REQUISITES: Yes ECMR 102, Math 101 or Math 106
- I. STUDENT LEARNING OUTCOMES: By the end of the course, the student will be able to:

Course Student Learning Outcome [SLO]	<u>PSLO</u>	<u>GER</u>	<u>ISLO</u>
a. Demonstrate current flow for	2. Connect electrical		5-Ind, Prof, Disc,
a given circuit	devices in		Know, Skills
	accordance with NEC		
b. Demonstrate motor circuit	2. Connect electrical		5-Ind, Prof, Disc,
sizing	devices in		Know, Skills
	accordance with NEC		
	3. Perform Routine		
	Maintenance on		
	motors and		
	transformers		
	4. Install motor		

	control circuits	
c. Apply NEC code to transformer circuits	2. Connect electrical devices in accordance with NEC 3. Perform Routine Maintenance on motors and transformers	5-Ind, Prof, Disc, Know, Skills
d. Create multi-phase circuits	3. Perform Routine Maintenance on motors and transformers	5-Ind, Prof, Disc, Know, Skills
LEV	Institutional Charlest	

_				
KEY	Institutional Student Learning Outcomes			
	[ISLO 1 – 5]			
ISLO	ISLO & Subsets			
#				
1	Communication Skills			
	Oral [O], Written [W]			
2	Critical Thinking			
	Critical Analysis [CA], Inquiry & Analysis [IA],			
	Problem Solving [PS]			
3	Foundational Skills			
	Information Management [IM], Quantitative			
	Lit,/Reasoning [QTR]			
4	Social Responsibility			
	Ethical Reasoning [ER], Global Learning [GL],			
	Intercultural Knowledge [IK], Teamwork [T]			
5	Industry, Professional, Discipline Specific			
	Knowledge and Skills			

J.	APPLIED LEARNING COMPONENT:	YesX No		
	If Yes, select one or more of the following categories:			
	Classroom/LabX Internship	Civic Engagement Creative Works/Senior Project		

Clinical Practicum	Research
Practicum	Entrepreneurship
Service Learning	(program, class, project)
Community Service	

K. TEXTS:

Hermon, Stephen. Delmar's standard Textbook of Electricity 6th Edition. Clifton Park: Cengage.

- L. REFERENCES: National Electric Code Book 2017
- M. EQUIPMENT: Supplied by college motors, transformers, conduit benders, motor starters and electrical conductors.
- N. GRADING METHOD: A-F
- O. SUGGESTED MEASUREMENT CRITERIA/METHODS:
 - Exams
 - Quizzes
 - Papers
 - Attendance

P. DETAILED COURSE OUTLINE:

N/A

- Q. LABORATORY OUTLINE: Yes
- 1) Drill, Tap and Caliper Measurements
- 2) Metal Clad Cable #1
- 3) Metal Clad Cable #2
- 4) Metal Clad Cable #3
- 5) Electric Water Heater
- 6) 120 Volt Relay Circuit
- 7) Water Tower Control Circuit
- 8) Single Phase Transformers Step Up- Step Down
- 9) Single Phase Transformer Three Wire Secondary
- 10) EMT Raceway cutting, Reaming
- 11) EMT Raceway Bending #1
- 12) EMT Raceway Bending #2
- 13) EMT Raceway Bending #3
- 14) Three Phase Transformers Delta to Wye
- 15) Three Phase Transformers Wve to Delta
- 16) Three Phase Transformers Wye to Wye
- 17) Three Phase Transformers Delta to Delta
- 18) Three Phase Motor Testing
- 19) Three Phase Load Testing
- 20) Photo Eye Control 120 Volt Load
- 21) Photo Eye Control 208 Volt Load
- 22) 120 Volt Holding Circuit
- 23) Motor Starter Two Wire Control
- **24)** Motor Starter Three Wire Control