STATE UNIVERSITY OF NEW YORK COLLEGE OF TECHNOLOGY CANTON, NEW YORK

MASTER SYLLABUS

ELEC 109 – ELECTRIC CIRCUITS (1) LBORATORY

Prepared By: Stephen E. Frempong

SCHOOL OF ENGINEERING TECHNOLOGY ELECTRICAL ENGINEERING TECHNOLOGY & ENGINEERING SCIENCE DEPARTMENT FALL 2018

A. TITLE: ELECTRIC CIRCUITS (1) LABORATORY

B. <u>COURSE NUMBER</u>: ELEC 109

C. <u>CREDIT HOURS</u>: (Hours of Lecture, Laboratory, Recitation, Tutorial, Activity)

Credit Hours: 1 !
Lecture Hours: per week !
Lab Hours: 2 per week !
Other: per week

Course Length: 15 Weeks

- **D.** <u>WRITING INTENSIVE COURSE</u>: There is some level of writing for laboratory report in this course. However, it is not considered writing intensive course.</u>
- **E. <u>GER CATEGORY</u>: NONE**
- F. SEMESTER(S) OFFERED: FALL/SPRING
- <u>G. COURSE DESCRIPTION</u>: An introductory laboratory course stressing the understanding of basic concepts and principles of direct current/voltage by analyzing resistive, capacitive and inductive circuits through practical laboratory application. Students will also study circuits using circuit analysis software.

H. PRE-REQUISITES: NONE

<u>CO-REQUISITE:</u> Electric Circuits I (ELEC101) and Pre-Calculus (Math 123)

I. ! STUDENT LEARNING OUTCOMES:

Institutional Student Learning Outcome (ISLO's)

 Communication Skills (2) Critical Thinking (3) Foundational Skills
 Social Responsibility (5) Industry, Professional, Discipline-Specific Knowledge and Skills.

Accreditation Board for Engineering and Technology ABET- Student Outcomes (a-k)

Course Objectives	ABET-Student Outcomes (a-k)	ISLO's
(a) Correctly	(b) An ability to select and apply	
measure the	the knowledge, techniques,	5. Industry,
currents and	skills, and modern tools of the	Professional,
voltage of series-	discipline to broadly-defined	ŕ

parallel dc network, verify Kirchhoff's current law, build and test the application of the current divider rule	engineering technology activities.	Discipline-Specific Knowledge and Skills.
(b) Validate conclusions regarding the behavior of capacitors in a steady-state dc network, plot the exponential curve for the voltage	(c) An ability to conduct standard tests and measurements; to conduct, analyze, and interpret experiments; and to apply experimental results to improve processes.	2. Critical Thinking
across a charging capacitor, and verify the basic equations for determining the total capacitance for capacitors in series and parallel.	(b) an ability to select and apply a knowledge of mathematics, science, engineering, and technology to engineering technology problems that require the application of principles and applied procedures or methodologies	5. Industry, Professional, Discipline-Specific Knowledge and Skills.

J. ! APPLIED LEARNING COMPONENT: LABORATORY

<u>K. TEXTS</u>: Laboratory Manual to Accompany Introductory Circuit Analysis

13/E, By – Boylestad and Kousourou ISBN: 0132196158 Publisher: Prentice Hall

- L. ! <u>REFERENCES</u>: Electric Circuits Fundamentals By – Floyd ISBN: 0130163945 Publisher: Prentice Hall
- M. <u>EQUIPMENT</u>: Students need to purchase laboratory components (kit) from the bookstore. All other equipment needed will be made available in the lab.
- N. GRADING METHOD: A-F
- O. <u>SUGGESTED MEASUREMENT CRITERIA/METHOD</u>S: Lab Projects and Lab Test.

Laboratory report may include the following:

- Names of all team members

- Name of the course/instructor/date
- Name of project or circuit
- introduction
- List of components used
- List of test equipment used
- Include all calculations
- Schematic or Block diagram
- Problems you had and how it was overcome
- Any external information/resources used
- The basic operation of the circuit
- Conclusion

P. DETAILED COURSE OUTLINE: NONE

Q. <u>LABORATORY OUTLINE</u>:

- 1. Resistors and the Color Code
- 2. Ohm's Law
- 3. Series Resistance
- 4. Series dc Circuits
- 5. Parallel Resistance
- 6. Parallel dc Circuits
- 7. Rheostats and Potentiometer
- 8. Series-Parallel dc Circuits
- 9. Superposition Theorem (dc)
- 10. Thevenin's Theorem and Maximum Power Transfer
- 11. Norton's Theorem and Current Sources
- 12. Methods of Analysis
- 13. Capacitors
- 14. R-L and R-L-C Circuits with a dc Source Voltage