STATE UNIVERSITY OF NEW YORK COLLEGE OF TECHNOLOGY CANTON, NEW YORK

MASTER SYLLABUS

ELEC 261 – ELECTRICITY

Updated By: Stephen Frempong

CANINO SCHOOL OF ENGINEERING TECHNOLOGY ELECTRICAL ENGINEERING TECHNOLOGY ENGINEERING SCIENCE DEPARTMENT FALL 2018

ELEC 261 – ELECTRICITY

- A. <u>TITLE</u>: ELECTRICITY
- **B. COURSE NUMBER:** ELEC 261

C. CREDIT HOURS: (Hours of Lecture, Laboratory, Recitation, Tutorial, Activity)

Credit Hours: 4
Lecture Hours: 3 per week
Lab Hours: 3 per week
Other: per week

Course Length: 15 Weeks

- D. <u>WRITING INTENSIVE COURSE</u>): No
- E. <u>GER CATEGORY:</u> NONE
- F. <u>SEMESTER(S) OFFERED</u>: Fall

G. <u>CATALOGUE DESCRIPTION</u>:

Fundamentals of direct and alternating current circuits, resistance, inductance, capacitance, magnetism are presented. Also basic machine theory as it applies to both direct and alternating current types is covered. The theory of control devices such as relays, contactors and switches is studied. Also, basic number systems and digital logic functions are introduced.

H. % <u>PRE-REQUISITES</u>: Pre-Calculus Algebra (MATH 123) or permission of instructor.

CO-REQUISITE: NONE

I. <u>STUDENT LEARNING OUTCOMES</u>:

Institutional Student Learning Outcome (ISLO's)

 Communication Skills (2) Critical Thinking (3) Foundational Skills
 Social Responsibility (5) Industry, Professional, Discipline-Specific Knowledge and Skills.

Course Objectives	Institutional SLO's
a. Compute different electrical values using Ohm's law	2. Crit. Thinking
	5. Industry,
	Professional,
	Discipline-Specific
	Knowledge and
	Skills.

b. Discuss different types of AC and DC electrical circuits	2. Crit. Thinking 5. Industry, Professional, Discipline-Specific Knowledge and Skills.
c. Use electrical measuring instruments properly	2. Crit. Thinking 5. Industry, Professional, Discipline-Specific Knowledge and Skills.
d. Discuss electrical conduction in gas, liquids, and solids	2. Crit. Thinking 5. Industry, Professional, Discipline-Specific Knowledge and Skills.
e. Discuss electromagnetic induction and its application in motors & generators	2. Crit. Thinking 5. Industry, Professional, Discipline-Specific Knowledge and Skills.
f. Discuss active and reactive circuit elements and their phase relationship	2. Crit. Thinking 5. Industry, Professional, Discipline-Specific Knowledge and Skills.
g. Understand single-phase and three-phase circuits	2. Crit. Thinking 5. Industry, Professional, Discipline-Specific Knowledge and Skills.
h. Discuss the principle operation of transformers, motors, and generators.	2. Crit. Thinking 5. Industry,

		Professional, Discipline-Specific Knowledge and Skills.
i.	Evaluate logic circuits containing AND, OR, NOR, and NAND logic gates	 Crit. Thinking Industry, Professional, Discipline-Specific Knowledge and Skills.

J. APPLIED LEARNING COMPONENT: CLASSROOM/LAB

K. <u>TEXTS:</u> Herman, Stephen. *Delmar's Standard Book of Electricity*, 5th ed. Park: Delmar Learning, 2016

L. <u>REFERENCES</u>: N/A

- M. <u>EQUIPMENT</u>: Standard electronic laboratory equipment
- N. <u>GRADING METHOD</u>: A F

O. <u>MEASUREMENT CRITERIA/METHODS</u>:

- Tests
- Quizzes
- Homework assignments
- Lab projects

P. <u>DETAILED COURSE OUTLINE</u>:

- I. Fundamental Units
 - A. Energy
 - B. Sources of Electricity
 - C. Conductors, Semiconductors, and Insulators
 - D. Electric Current
 - E. Potential Difference, Voltage
 - F. Resistance
 - G. Measurement of Current, Voltage, and Resistance
- II. Direct Current
 - A. Ohm's Law

- B. Series Circuits
- C. Parallel Circuits
- D. Series-Parallel Circuits
- III. Direct Current (DC) Circuits
 - A. Wire Measurement
 - B. Kirchhoff's Law
 - C. Work, Power, Energy
- IV. Magnetism
 - A. Permanent Magnets
 - B. Electromagnets
 - C. Magnetic Circuits

V. Inductance

- A Definition
- B. Units of Measurement
- C. Time Constant
- D. Self Inductance
- E. Lenz's Law
- F. Mutual Inductance
- G. RL circuits

VI. Capacitance

- A. Definition &
- B, Units of Measurement &
- C. Time Constant
- D. RC Circuits
- VII. Single Phase Circuits
 - A. Phase Relations
 - B. Active and Reactive Powers
 - C. Power Factor
 - D. RLC Circuits
 - E. Resonance Circuits

VIII. Three Phase Circuits

- A. Wye Connection, Line/Phase Voltages and Currents
- B. Delta Connection, Line/Phase Voltages and Currents
- C. Powers and Power Factor
- D. Power Sources and Loads
- IX. Voltage/Current Generation

- A. Theory
- B. Sine Wave and DC Outputs
- C. Peak, Effective, Average Values
- D. AC and DC Generators

X. Transformers

- A. Theory of Operation
- B. Load Operation
- C. Phasing of the Windings
- D. Power Calculations
- XI. Motors
 - A. Theory of Operation
 - B. Simple DC Motors
 - C. Shunt and Series Motors
 - D. Ac Motor Theory
 - E. Three Phase Induction Motors
 - F. Single Phase Induction Motors
- XII. Introduction to Digital Logic
 - A. Binary Number System
 - B. Basic Logic Gates and Their Truth Tables

Q. <u>LABORATORY OUTLINE</u>:

LIST OF EXPERIMENTS

EXP. NO.TITLE1INTRODUCTION TO ELECTRICITY2DC SERIES CIRCUITS3DC PARALLEL and SERIES-PARALLEL CIRCUITS4LINEAR AND NON_LINEAR RESISTORS
CHARACTERISTICS

LP1	LAB PRACTICAL NO. 1
5	INTRODUCTION TO THE OSCILLOSCOPE
6	CAPACITIVE DISCHARGE FLASHER and RAMP GENERATOR
7	TRANSFORMER APPLICATIONS
8	RC CIRCUIT CHARACTERISTICS
9	SERIES RESONANCE
LP2	LAB PRACTICAL NO. 2
10	INTRODUCTION TO DIGITAL LOGIC
11	SINGLE PHASE INDUCTION MOTOR