

MASTER SYLLABUS

ELEC 355 – EMBEDDED ELECTRONICS

Created by: Dr. Shahrokh Sani

SCHOOL OF ENGINEERING TECHNOLOGY ELECTRICAL ENGINEERING TECHNOLOGY & ENGINEERING SCIENCE DEPARTMENT

Fall- 2021

- A. <u>TITLE</u>: EMBEDDED ELECTRONICS
- B. <u>COURSE NUMBER</u>: ELEC 355
- C. <u>CREDIT HOURS (Hours of Lecture, Laboratory, Recitation, Tutorial, Activity):</u>

Credit Hours: 3

Lecture Hours per Week: 2 per week

Lab Hours per Week: 2 per week Other per Week:

Course Length (# of Weeks): 15 weeks

D. <u>WRITING INTENSIVE COURSE</u>: No

E. <u>GER CATEGORY</u>: None

F. <u>SEMESTER(S) OFFERED</u>: Fall/Spring

G. <u>COURSE DESCRIPTION</u>: This course is designed to give students theoretical and hands-on experience in Field Programmable Gate Array (FPGA) and Very High-Speed Integrated Circuit Hardware Description Language (VHDL). The course covers the concept and architecture of Programmable Logic Device. The graphic editor of Altera's Quartus Design software and VHDL text editor are used to define digital logic to FPGA.

H. <u>PRE-REQUISITES/CO-REQUISITES</u>:

a. Pre-requisite(s): ELEC 165 (Digital Fundamentals & Systems), ELEC 166 (Digital Fundamentals & Systems Laboratory) and MATH 123 (Pre-Calculus Algebra) or permission of the instructor.

b. Co-requisite(s): None

c. Pre- or co-requisite(s):

Course Student Learning	ABET Student	<u>ISLO</u>
<u>Outcome [SLO]</u>	Outcomes (1-5)	
a. Solve problems that arise	1. An ability to apply	5. Industry,
with Programmable Logic	knowledge,	Professional,
Device (PLD).	techniques, skills and	Discipline-Specific
	modern tools of	Knowledge and Skills
	mathematics, science,	
	engineering, and	
	technology to solve	
	broadly defined	
	engineering problems	
	appropriate to the	
	discipline.	
b. Design flow and simulation	1. An ability to apply	5. Industry,
processes associated with	knowledge,	Professional,
a design using VHDL and	techniques, skills and	Discipline-Specific
synthesizing it on FPGAs.	modern tools of	Knowledge and Skills
	mathematics, science,	
	engineering, and	
	technology to solve	
	broadly defined	
	engineering problems	
	appropriate to the	
	discipline.	

I. <u>STUDENT LEARNING OUTCOMES</u>:

c. Work with modern FPGA design tools including Intel (Altera) FPGAs	1. An ability to apply knowledge, techniques, skills and modern tools of mathematics, science, engineering, and technology to solve broadly defined engineering problems appropriate to the discipline.	5. Industry, Professional, Discipline-Specific Knowledge and Skills
d. Construct and test digital circuits using VHDL code.	4. An ability to conduct standard tests, measurements, and experiments and to analyze and interpret the result to improve processes.	2. Critical Thinking – [PS]

KEY	Institutional Student Learning Outcomes	
	[ISLO 1 – 5]	
ISLO	ISLO & Subsets	
#		
1	Communication Skills	
	Oral [O], Written [W]	
2	Critical Thinking	
	Critical Analysis [CA], Inquiry & Analysis [IA],	
	Problem Solving [PS]	
3	Foundational Skills	
	Information Management [IM], Quantitative	
	Lit,/Reasoning [QTR]	
4	Social Responsibility	
	Ethical Reasoning [ER], Global Learning [GL],	
	Intercultural Knowledge [IK], Teamwork [T]	
5	Industry, Professional, Discipline Specific	
	Knowledge and Skills	

J. <u>APPLIED LEARNING COMPONENT:</u> Yes_ $\sqrt{}$ No_____

If Yes, select one or more of the following categories:

Classroom/Lab $$	Civic Engagement
Internship	Creative Works/Senior Project
Clinical Practicum	Research
Practicum	Entrepreneurship
Service Learning	(program, class, project)
Community Service	

K. <u>TEXTS:</u> Digital Electronics: A Practical Approach with VHDL 9th Edition by William Kleitz. ISBN-10: 0132543036

L. <u>REFERENCES</u>: The Design Warrior's Guide to FPGAs, Devices, Tools and Flows, Clive "Max" Maxfield, ISBN: 0-7506-7604-3

M. <u>EQUIPMENT</u>: Altera DE2-115 Development and Education Board.

N. **<u>GRADING METHOD</u>**: A-F

O. <u>SUGGESTED MEASUREMENT CRITERIA/METHODS</u>:

- Exams
- Projects
- Participation
- Presentation

P. <u>DETAILED COURSE OUTLINE</u>:

- I. Programable Logic Devices (PLD)
 - A. PLD Design Flow
 - B. PLD Architecture
 - C. Using PLDs to solve basic logic design
- II. Field Programmable Gate Array (FPGA)
 - A. Altera's Quartus II design and simulation software
 - B. FPGA applications with VHDL
 - C. FPGA applications with LPMs
 - D. FPGA electrical characteristics
 - E. Schematic Design for Intel (Altera) FPGAs
 - F. Waveform Simulation for Intel (Altera) FPGAs
 - G. VHDL Program for Intel (Altera) FPGAs
- III. Boolean Algebra and Reduction Techniques
 - A. Using FPGA to Solve Basic Logic Designs.
 - B. Entering Truth Tables Using VHDL Vector Signals.
- IV. Exclusive OR and Exclusive NOR Gates
 - A. FPGA Parallel Binary Comparator
 - B. FPGA Controlled Inverter
- V. Arithmetic Operations and Circuits
 - A. Library of Parameterized Modules (LPM)
 - B. 8-Bit Binary Adder/Subtractor
 - C. BCD Adder
 - D. LPM Adder/Subtractor

- VI. Code Converters, Multiplexers, and Demultiplexers
 - A. Decoders and Multiplexer Implementation in VHDL
 - B. Decoders and Multiplexer Using LPMs
 - C. LPM Comparator
- VII. Flip-Flops and Registers
 - A. VHDL Description of a D Flip-Flop
 - B. VHDL Description of a J-K Flip-Flop
 - C. LPM Flip-Flop
- VIII. Counter Circuits and VHDL State Machines
 - A. VHDL Description of a 16-Bits Up Counter
 - B. VHDL Description of the Seven-Segment Decoder
 - C. LPM Counter
 - D. Implementing State Machines in VHDL
- IX. Other Topics: As Defined by the Instructor (The topics on FPGA applications are strongly recommended)

Q. <u>LABORATORY OUTLINE</u>:

- A. Using FPGA to Solve Basic Logic Designs.
- B. Schematic Design for Intel (Altera) FPGAs.
- C. Waveform Simulation for Intel (Altera) FPGAs.
- D. VHDL Program for Intel (Altera) FPGAs.
- E. Entering Truth Tables Using VHDL Vector Signals.
- F. VHDL Description of Adders.
- G. Decoders and Multiplexer Implementation in VHDL.
- H. VHDL FPGA Design Using LPMs.
- I. VHDL Description of Flip-Flops.
- J. VHDL Description of Counters.
- K. VHDL Description of Seven Segment Decoder.
- L. Implementing State Machines in VHDL.
- M. VHDL Description of Shift Registers.
- N. VHDL Components and Instantiations