STATE UNIVERSITY OF NEW YORK COLLEGE OF TECHNOLOGY CANTON, NEW YORK

MASTER SYLLABUS

ELEC 383– Power Transmission and Distributions

Created by: Stephen Frempong

Updated by : Stephen Frempong

CANINO SCHOOL OF ENGINEERING TECHNOLOGY ELECTRICAL ENGINEERING TECHNOLOGY & ENGINEERING ECIENCE DEPRTMENT

February 2019

A. TITLE : Power Transmission and Distributions

B. COURSE NUMBER: ELEC 383

C. <u>CREDIT HOURS</u>: (Hours of Lecture, Laboratory, Recitation, Tutorial, Activity)

Credit Hours: 3
Lecture Hours: 3 one hour lecturers per week
Lab Hours: per week
Other: per week

Course Length: 15 Weeks

D. ! WRITING INTENSIVE COURSE: NO

E. ! GER CATEGORY: NONE

F. ! <u>SEMESTER OFFERED</u>: FALL/SPRING

- G. ! <u>CATALOG DESCRIPTION</u>: This course in electrical power generation and transmission will emphasize on those aspects that concern engineers and technologists in the performance of their tasks. Topics covered include: Hydropower, Thermal, Nuclear, and Wind Power Generating Stations, Transmission and Distribution of Electrical Energy, Direct Current Transmission, HVDC Light Transmission System, Power Stability, and Cost of Electricity.
- H. ! <u>PRE-REQUISITES</u>: ELEC 215 [Electrical Energy Conversion], or permission of instructor.

CO-REQUISITES: NONE

I. ! STUDENT LEARNING OUTCOMES:

- Institutional Student Learning Outcomes (ISLO)
- Accreditation Board for Engineering and Technology (ABET) Student Outcomes

Course Objectives	Institutional SLO	ABET-Student Outcomes
a. Perform power-flow	2. Critical Thinking	1. An ability to apply
analysis	5. Industry, Professional,	knowledge, techniques, skills
	Discipline-Specific Knowledge	and modern tools of
	and Skills	mathematics, science,
		engineering, and technology to

		colve broadly defined
		solve broadly defined
		engineering problems
		appropriate to the discipline.
b. Analyze transmission line	5. Industry, Professional,	1. An ability to apply
voltages	Discipline-Specific Knowledge	knowledge, techniques, skills
	and Skills	and modern tools of
		mathematics, science,
		engineering, and technology to
		solve broadly defined
		engineering problems
		appropriate to the discipline.
c. Apply critical thinking to	2. Critical Thinking	1. An ability to apply
solving electrical power		knowledge, techniques, skills
problems		and modern tools of
		mathematics, science,
		engineering, and technology to
		solve broadly defined
		engineering problems
		appropriate to the discipline.
d. Perform transmission line	5. Industry, Professional,	1. An ability to apply
calculations	Discipline-Specific Knowledge	knowledge, techniques, skills
	and Skills	and modern tools of
		mathematics, science,
		engineering, and technology to
		solve broadly defined
		engineering problems
		appropriate to the discipline.
e. Nuclear, Hydroelectric,	5. Industry, Professional,	1. An ability to apply
and Wind Power	Discipline-Specific Knowledge	knowledge, techniques, skills
generation	and Skills	and modern tools of
		mathematics, science,
		engineering, and technology to
		solve broadly defined
		engineering problems
		appropriate to the discipline.
f. Perform transmission line	5. Industry, Professional,	4. An ability to conduct
simulation	Discipline-Specific Knowledge	standard tests, measurements,
	and Skills	and experiments and to
		analyze and interpret the result
		to improve processes.
		5. An ability to function
		effectively as a member as
		well as a leader on technical
		teams.
		icams.

J. APPLIED LEARNING COMPONENT:

Classroom/Lab

K. <u>TEXTS</u>:

 Theodore Wildi, <u>Electrical Machines</u>, <u>Drives</u>, and <u>Power Systems</u>, 6th Edition, Upper Saddle River, New Jersey 07458: Prentice Hall, 2006. OR, as determined by instructor.

L. !<u>REFERENCES</u>:

Arthur R. Bergen and Vijay Vittal, <u>Power Systems Analysis</u>, 2nd Edition, Upper Saddle River, New Jersey 07458: Prentice Hall, 2000.

M. **EQUIPMENT:** Power laboratory equipment plus simulation software will be used for the lab exercises.

N. GRADING METHOD: A-F

O. SUGGESTED MEASUREMENT CRITERIA/METHODS:

Exams Quizzes Papers Participation Presentation

P. <u>DETAILED TOPICAL OUTLINE</u>:

- I. ! Special Purpose Transformers
- II. ! Three-Phase Transformers
 - a. Delta-delta connection
 - b. Delta-wye connection
 - c. Wye-delta connection
 - d. Wye-wye connection
 - e. Open delta connection
 - f. Three phase transformer
 - g. Step-up and step-down autotransformer
 - h. Calculations involving 3-phase transformer
- III. Synchronous Machines
 - a. Constant Speed Operation
 - b. Excitation
 - c. Power Factor Rating
 - d. Starting Torque
 - e. Power Factor Control
 - f. Construction
 - g. Stator Similar to an Alternator
 - h. Rotor Design

- i. Exciters
- j. Phasor Analysis
- k. Lagging and Leading Current
- 1. Maximum Load
- m. Pull Out Torque
- n. Control Through D-C Field Excitation
- o. Normal Excitation Unity Power Factor
- p. Under Excited Lagging Power Factor
- q. Over Excited Leading Power Factor
- r. Calculation of CEMF
- s. Load Characteristics
- t. V and A Curves
- u. Analysis of Current Components
- V. The Synchronous Capacitor
 - a. Control of Field Excitation
 - b. Control of Line Current
 - c. Correction of Power Factor
 - d. Calculation of KVA Rating
 - e. Dual Purpose Motor
 - f. Action as Synchronous Condenser and Motor
 - g. Calculation of KVA Rating
- VI. Hunting
 - a. Sensitivity to Changes in Load
 - b. Shift to a New Torque Angle
 - c. Oscillations About Synchronous Position
 - d. Rotor Pulling Out of Step
- IV. Alternate Power Generation Methods
 - a. Wind Energy
 - b. Solar Energy
 - c. Hydro-electric
 - d. Fuel cells
- V. Hydropower Generating Station
 - a. Available hydro power
 - b. Types of hydropower stations
 - c. Makeup of a hydropower plant
 - d. Pumped-storage installations
- VI. Thermal Generating Stations
 - a. Makeup of a thermal generating station
 - b. Turbines
 - c. Condenser
 - d. Cooling towers
 - e. Boiler-feed pump
 - f. Energy flow diagram for a steam plant
 - g. Thermal stations and the environment
- VII. Nuclear Generating Stations
 - a. Composition of an atomic nucleus isotopes

- b. The source of uranium
- c. Energy released by atomic fission
- d. Chain reaction
- e. Types of nuclear reactors
- f. Example of a light-water reactor
- g. Example of heavy water reactor
- h. Principles of the fast breeder reactor
- i. Nuclear fusion
- VIII. Transmission of Electrical Energy
 - a. Principal components of a power distribution system
 - b. Types of power lines
 - c. Standard voltages
 - d. Components of a HV transmission line
 - e. Construction of a line
 - f. Galloping lines
 - g. Corona effect radio interference
 - h. Pollution
 - i. Lighting
 - j. Impulse insulation
 - k. Ground wires
 - 1. Tower grounding
 - m. Equivalent circuit of a line
 - n. Typical impedance values
 - o. Voltage regulation and power transmission capability of transmission lines
 - p. Resistive/inductive lines
 - q. Choosing the line voltage
 - r. Methods of increasing power capacity
 - s. Extra-high power lines
 - IX. Distribution of Electrical Energy
 - a. Substation equipment
 - b. Circuit Breakers
 - c. Air-break switches
 - d. Grounding switches
 - e. Surge arresters
 - f. Current-limiting reactors
 - g. Grounding Transformer
 - h. Medium/Low voltage distribution
 - X. HVDC Light Transmission System
 - XI. The Cost of Electricity

Q. <u>LABORATORY OUTLINE</u>:

- I. Safety & Power Supply
- II. Phase Sequence
- III. Real Power, Reactive Power, and Apparent power transfer

- IV. Power Flow & Voltage Regulation of a Simple Transmission Line
- V. Phase Angle & Voltage Drop between Sender & Receiver
- VI. Parameters which Affect Real & Reactive Power Flow
- VII. Parallel Lines, Transformers & Power-Handling Capacity
- VIII. The Alternator
- IX. The Synchronous machines
- X. The Synchronous Capacitor & Long High Voltage Lines
- XI. Transmission Line Networks & the Three-Phase Regulating Autotransformer
- XII. The Synchronous Motor Under Load
- XIII. Hunting & System Oscillation
- XIV. Power System Transients