STATE UNIVERSITY OF NEW YORK COLLEGE OF TECHNOLOGY CANTON, NEW YORK



## MASTER SYLLABUS

ELEC 416 - Microelectronics Circuit Design

Prepared By: Stephen Frempong

CANINO SCHOOL OF ENGINEERING TECHNOLOGY ELECTRICAL ENGINEERING TECHNOLOGY & ENGINEERING SCIENCE DEPARTMENT FALL 2018

- A. TITLE : Microelectronics Circuit Design
- B. COURSE NUMBER: ELEC 416
- C. <u>CREDIT HOURS</u>: (Hours of Lecture, Laboratory, Recitation, Tutorial, Activity)
  # Credit Hours: 3
  # Lecture Hours: 2 per week
  # Lab Hours: 2 per week
  Other: per week

Course Length: 15 Weeks

- D. WRITING INTENSIVE COURSE: NO
- E. <u>GER CATEGORY:</u> NONE
- F. <u>SEMESTER OFFERED</u>: FALL and SPRING
- G. <u>COURSE DESCRIPTION</u>: Analyzing and designing analog electronic circuits, digital electronic circuits, and the foundations of electronic circuit design. Topics covered include : Operational amplifier circuit design, Integrated circuit biasing and active loads, Analysis of differential and multistage amplifiers, Feedback and Stability, and Operational Amplifier Integrated Circuits.
- H. <u>PRE-REQUISITES</u>: Industrial Power Electronics (ELEC 332) and Electronic Circuits (ELEC 231), or permission of instructor.

CO-REQUISITE: NONE

I. <u>STUDENT LEARNING OUTCOMES:</u>

## Institutional Student Learning Outcome (ISLO's)

 Communication Skills
 Critical Thinking
 Foundational Skills
 Social Responsibility
 Industry, Professional, Discipline-Specific Knowledge and Skills.

Accreditation Board for Engineering and Technology ABET- Student Outcomes (a-k)

| Course Objectives             | ABET-Students Outcomes (a-k) | Institutional SLO's        |
|-------------------------------|------------------------------|----------------------------|
| 1. Determine the value of the | (b) An ability to select     | 2. Critical Thinking       |
| four currents present in a    | and apply a knowledge of     |                            |
| two transistor current        | mathematics, science,        | 5. Industry, Professional, |
| source circuit containing a   | engineering, and             | Discipline-Specific        |
| reference resistor.           | technology to engineering    | Knowledge and Skills.      |

|                                                                                                                                                                                                                                                             | technology problems that<br>require the application of<br>principles and applied<br>procedures or<br>methodologies.                                                                                                                                   |                                                                                                                          |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|
| 2. Determine the<br>transcondutance (g <sub>m</sub> ) and<br>the output resistance (r <sub>0</sub> )<br>for a <sub>MOSFET</sub> amplifier with<br>an active load and load<br>resistor.                                                                      | (b) An ability to select and<br>apply a knowledge of<br>mathematics, science,<br>engineering, and<br>technology to engineering<br>technology problems that<br>require the application of<br>principles and applied<br>procedures or<br>methodologies. | <ol> <li>Critical Thinking</li> <li>Industry, Professional,<br/>Discipline-Specific<br/>Knowledge and Skills.</li> </ol> |
| <ol> <li>For a Shunt-Series<br/>feedback amplifier,<br/>determine the open-loop<br/>gain (A<sub>i</sub>), the feedback<br/>current transfer function<br/>(B<sub>i</sub>) and the closed loop<br/>current transfer function<br/>(A<sub>if</sub>).</li> </ol> | (b) An ability to select and<br>apply a knowledge of<br>mathematics, science,<br>engineering, and<br>technology to engineering<br>technology problems that<br>require the application of<br>principles and applied<br>procedures or<br>methodologies. | <ol> <li>Critical Thinking</li> <li>Industry, Professional,<br/>Discipline-Specific<br/>Knowledge and Skills.</li> </ol> |
| 4. For a single pole feedback<br>amplifier, determine the<br>closed loop low frequency<br>gain, given the open loop<br>response function and a<br>value for Beta of 0.03.                                                                                   | (b) an ability to select and<br>apply a knowledge of<br>mathematics, science,<br>engineering, and<br>technology to engineering<br>technology problems that<br>require the application of<br>principles and applied<br>procedures or<br>methodologies. | <ol> <li>Critical Thinking</li> <li>Industry, Professional,<br/>Discipline-Specific<br/>Knowledge and Skills.</li> </ol> |
|                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                       |                                                                                                                          |

# J. <u>APPLIED LEARNING COMPONENT:</u> CLASSROOM/LAB

# K. <u>TEXTS</u>:

Neamen, Donald A. (2010)., Microelectronics Circuits Analysis and Design,

4th Ed, New York: McGraw-Hill

L. <u>REFERENCES</u>:

Richard R. Spencer and Mohammed S. Ghausi, <u>Introduction to Electronic</u> <u>Circuit Design</u>, 1<sup>st</sup> Edition, Upper Saddle River, New Jersey 07458: Prentice Hall, 2003.

M. EQUIPMENT: As determined by the instructor

## N. <u>GRADING METHOD</u>: A-F

#### O. SUGGESTED MEASUREMENT CRITERIA/METHODS

- Hourly exams,
- Quizzes
- Homework assignments
- Written laboratory reports

#### P. <u>DETAILED COURSE OUTLINE</u>:

- I. Integrated Circuit Biasing and Active Loads
  - A. Bipolar Transistor Current Sources
  - B. FET Current Sources
  - C. Circuits with Active Loads
  - D. Small signal Analysis
  - E. Op-Amp Applications
  - F. Operational Transconductance Amplifiers
  - G. Op-Amp Circuit Design
- II. Differential and Multistage Amplifiers
  - A. The Differential Amplifier
  - B. BJT Differential Pair
  - C. FET Differential Pair
  - D. Differential Amplifier with Active Load
  - E. Design Application

#### III. Feedback and Stability

- A. Introduction to Feedback
- B. Ideal Feedback Topologies
- C. Voltage (Series-Shunt) Amplifiers
- D. Current (Shunt-Series) Amplifiers
- E. Transconductance (Series-Series) Amplifiers
- F. Transresistance (Shunt-Shunt) Amplifiers
- G. Loop Gain
- H. Bode Plots
- I. Nyquist Plots
- J. Gain and Phase Margins

- K. Stability of the Feedback Circuit
- IV. Operational Amplifier Circuits
  - A. General Op-Amp Circuit Design
  - B. A Bipolar Operational Amplifier Circuit
  - C. CMOS Operational Amplifier Circuits
  - D. JFET Operational Amplifier Circuits
  - E. Design Application

# Q. LABORATORY OUTLINE

- A. Diode Thermometer with a Bipolar Transistor
- B. An Output Stage Amplifier Using MOSFET
- C. Electronic Thermometer with an Instrumentation Amplifier
- D. An NMOS Current Source
- E. A MOSFET Feedback Circuit
- F. A Two-Stage CMOS Op-Amp to Match a Given Output Stage
- G. An Offset Voltage Compensation Network
- H. An Active Bandpass Filter
- I. A Static CMOS Logic Gate
- J. A Static Emitter-Coupled Logic (ECL) Gate