STATE UNIVERSITY OF NEW YORK COLLEGE OF TECHNOLOGY CANTON, NEW YORK

MASTER SYLLABUS

ELEC 436 – BIOMEDICAL ELECTRONICS

Created by: Stephen Frempong

Updated by: Stephen Frempong

SCHOOL OF ENGINEERING TECHNOLOGY ELECTRICAL ENGINEERING TECHNOLOGY & ENGINEERING SCIENCE DEPARTMENT

February 2019

A. **TITLE :** BIOMEDICAL ELECTRONICS

B. COURSE NUMBER: ELEC 436

C. <u>CREDIT HOURS</u>: (Hours of Lecture, Laboratory, Recitation, Tratedizity)

Credit Hours: 3
Lecture Hours: 2 per week
Lab Hours: 2 per week
Other: per week

Course Length: 15 Weeks

D. !WRITING INTENSIVE COURSE: NO

E. ! GER CATEGORY: NONE

F. ! SEMESTER OFFERED: FALL/SPRING

- G. <u>ICATALOG DESCRIPTION</u>: This course is designed to give students theoretical and hands-on experience in biomedical instrumentation and measurement. Topics covered include: Medical Instrument Transducers, Biopotential Amplifiers, The pacemaker, Ultrasonic Equipment, Central Station Monitor, Electroencephalograph and Filtering, Electrosurgical Units and Laser Surgery, and Catheters and Blood Pressure Monitoring Devices.
- H. <u>**PRE-REQUISITES:**</u> ELEC 416 [Microelectronics Circuit Design] and MATH 162 [Calculus II], or permission of instructor.

CO-REQUISITES: NONE

I. ! <u>STUDENT LEARNING OUTCOMES</u>:

- Institutional Student Learning Outcomes (ISLO)
- Accreditation Board for Engineering and Technology (ABET) Student Outcomes

Course Objectives	Institutional SLO	ABET- Student Outcomes
a. Solve problems that arise with complex medical equipment.	2. Critical Thinking	1. An ability to apply knowledge, techniques, skills and modern tools of mathematics, science, engineering, and technology to solve broadly defined engineering problems appropriate to the discipline.
b. Design and modify	2. Critical Thinking	1. An ability to apply knowledge,
basic medical		techniques, skills and modern tools of

	electronic		mathematics, science, engineering, and
	instrument		technology to solve broadly defined
			engineering problems appropriate to the
			discipline.
с.	Apply the	5. Industry, Professional,	1. An ability to apply knowledge,
	knowledge of Op-	Discipline-Specific	techniques, skills and modern tools of
	Amps in the	Knowledge and Skills	mathematics, science, engineering, and
	design process		technology to solve broadly defined
	0 1		engineering problems appropriate to the
			discipline.
d.	Construct and test	5. Industry, Professional,	2. An ability to design systems,
	electronic circuits	Discipline-Specific	components, or processes meeting
	used in medical	Knowledge and Skills	specified needs for broadly-defined
	equipment.		engineering problems appropriate to the
	1 1		discipline.
			4. An ability to conduct standard tests,
			measurements, and experiments and to
			analyze and interpret the result to improve
			processes.
			processes.
1		1	

J. APPLIED LEARNING COMPONENT:

Classroom/Lab

K. TEXTS:

Principles of Biomedical Instrumentation and Measurements, Richard Aston, ISBN: 0-675-20943-9, Maxwell Macmillan International Publishing Company

L. <u>REFERENCES</u>:

Joseph J. Carr and John M. Brown, <u>Introduction to Biomedical Equipment and</u> <u>Technology</u>, 4thEdition. Upper Saddle River, New Jersey: Prentice-Hall, 2001.

M. <u>EQUIPMENT</u>: Students need to purchase laboratory components kit. (Basic test instruments will be identified and purchased).

N. ! GRADING METHOD: A-F

O. SUGGESTED MEASUREMENT CRITERIA/METHODS:

Exams Laboratory projects Participation Presentation

P. DETAILED TOPICAL OUTLINE:

- 1. Basic Theories of Measurement
 - a. Categories of Measurement
 - b. Factors in Making Measurements
 - c. Measurement Errors
 - d. Categories of Errors
 - e. Dealing with Measurement Errors
 - f. Error Contribution Analysis
- 2. Electrodes, Sensors, and Transducers
 - a. Signal Acquisition
 - b. Transduction
 - c. Tactics and Signals Processing for Improved Sensing
 - d. Medical Surface Electrodes
 - e. Microelectrodes
 - f. Strain Gauges
 - g. Quartz Pressure Sensors
 - h. Matching Sensors to Circuits
 - i. Temperature, Capacitive, and Inductive Transducers
- 3. Bioelectric Amplifiers
 - a. Multiple-Input Circuits
 - b. Signal Processing Circuits
 - c. Practical Op-Amps
 - d. Isolation Amplifiers
 - e. Chopper Stabilized Amplifiers
 - f. Input Guarding
- 4. Electrocardiographs
 - a. The Heart as a Potential Source
 - b. The ECG Waveform
 - c. The Standard Lead System
 - d. Other ECG Signals
 - e. The ECG Preamplifier
 - f. ECG Readout Devices
 - g. ECG Machines
 - h. ECG Maintenance/Troubleshooting
- 5. Physiological Pressure and Other Cardiovascular Measurements and Devices
 - a. Physiological Pressures
 - b. Pressure Measurements
 - c. Blood Pressure Measurements
 - d. Oscillometric and Ultrasonic Noninvasive Pressure Measurements
 - e. Pressure Amplifier Designs
 - f. Ac Carrier Amplifiers
 - g. Systolic, Diastolic, and Mean Detector Circuits
 - h. Pressure Differentiation (dP/dT) Circuits
 - i. Practical Problems in Pressure Monitoring
 - j. Step-Function Frequency Response Test

- k. Defibrillator Circuits
- 1. Pacemakers
- 6. Medical Ultrasonography
 - a. Ultrasound Transducers
 - b. Absorption and Attenuation of Ultrasound Energy
 - c. Biological Effects of Ultrasound
 - d. Doppler Effect
 - e. Transcutaneous Doppler Flow Detector
 - f. Flowmeters
 - g. Ultrasonic Blood Pressure Measurement

Q. LABORATORY OUTLINE (As projects):

- 1. Electrode Model Circuit
- 2. Quartz Pressure Sensor Oscillator
- 3. Ac-coupled Programmable-gain Instrumentation Amplifier (PGIA)
- 4. ECG Amplifier
- 5. Electrosurgery Unit Interference Filter
- 6. Systolic Detector Circuit
- 7. Photoplethysmograph Circuit
- 8. Cardiotachometer Circuit
- 9. Electrosurgery Tester
- 10. Photometer Calibration Circuit