STATE UNIVERSITY OF NEW YORK COLLEGE OF TECHNOLOGY CANTON, NEW YORK

MASTER SYLLABUS

COURSE NUMBER – COURSE NAME ENGS 201 – Statics CIP Code: 14.1101

Created by: Arthur Hurlbut, Ph.D., P.E.

Updated by: Dr. Lucas Craig

Canino School of Engineering Technology

Department: Engineering Science

Semester/Year: Spring 2025

A. <u>TITLE</u>: Statics

B. <u>COURSE NUMBER</u>: ENGS 201

C. <u>CREDIT HOURS</u>: (Hours of Lecture, Laboratory, Recitation, Tutorial, Activity)

Credit Hours: 3
Lecture Hours: 2 per week
Lab Hours: 2 per week
Other:

Course Length: 15 Weeks

D. WRITING INTENSIVE COURSE: Yes No

E. <u>GER CATEGORY</u>: None: Yes: GER *If course satisfies more than one*: GER

F. <u>SEMESTER(S) OFFERED</u>: Fall Spring Fall & Spring

G. <u>COURSE DESCRIPTION</u>:

A vector approach to particle equilibrium, equivalent force systems, rigid body equilibrium and analysis of structure. Additional topics include friction, centroids and centers of gravity and moments of inertia.

H. <u>**PRE-REOUISITES</u>**: None \square Yes \boxtimes If yes, list below:</u>

PHYS 131, University Physics 1 and MATH 161, Calculus I

<u>CO-REOUISITES</u>: None Yes If yes, list below:

I. <u>STUDENT LEARNING OUTCOMES</u>: (see key below)

By the end of this course, the student will be able to:

<u>Course Student Learning Outcome</u> [SLO]	Program Student Learning Outcome [PSL0]	<u>GER</u> [If Applicable]	<u>ISLO & SUBSETS</u>	
Determine the magnitude and direction of forces	a		2-Crit Think ISLO ISLO	CA IA PS Subsets
Calculate equivalent force systems	a		2-Crit Think ISLO ISLO	CA IA PS Subsets
Determine forces necessary for static equilibrium	a		2-Crit Think ISLO ISLO	CA IA PS Subsets
Apply frictional forces to vector analysis	a		2-Crit Think ISLO ISLO	CA IA PS Subsets
Determine the centroid and moments of inertia of various shapes	a		2-Crit Think ISLO ISLO	CA IA PS Subsets
Apply analytical techniques to frames, trusses, and simple machines	a, e		2-Crit Think 5-Ind, Prof, Disc, Know Skills 1-Comm Skills	W CA IA PS
Apply these skills in strength of material analysis.	a, e, k		2-Crit Think 5-Ind, Prof, Disc, Know Skills ISLO	CA IA PS Subsets

KEY	Institutional Student Learning Outcomes [ISLO 1 – 5]		
ISLO	ISLO & Subsets		
#			
1	Communication Skills		
	Oral [O], Written [W]		
2	Critical Thinking		
	Critical Analysis [CA], Inquiry & Analysis [IA], Problem		
	Solving [PS]		
3	Foundational Skills		
	Information Management [IM], Quantitative Lit,/Reasoning		
	[QTR]		
4	Social Responsibility		
	Ethical Reasoning [ER], Global Learning [GL],		
	Intercultural Knowledge [IK], Teamwork [T]		
5	Industry, Professional, Discipline Specific Knowledge and		
	Skills		

J. <u>APPLIED LEARNING COMPONENT:</u>

Yes	\times	No	
I US	\sim	110	

If YES, select one or more of the following categories:

Classroom/LabCivic EngagementInternshipCreative Works/Senior ProjectClinical PlacementResearchPracticumEntrepreneurshipService Learning(program, class, project)Community ServiceCommunity Service

K. <u>TEXTS</u>:

Vector Mechanics for Engineers: Statics, Beer and Johnston, 12th edition (McGraw Hill)

L. <u>REFERENCES</u>:

Engineering Mechanics, Higdon and Stiles, Prentice Hall

M. <u>EOUIPMENT</u>: None Needed:

N. <u>GRADING METHOD</u>: A-F

O. <u>SUGGESTED MEASUREMENT CRITERIA/METHODS</u>:

- Examinations
- Homework
- Comprehensive Final

P. <u>DETAILED COURSE OUTLINE</u>:

- I. Introduction
 - A. What Is Mechanics?
 - **B.** Fundamental Concepts and Principles
 - C. Units
 - **D.** Methods of Problem Solution
 - E. Numerical Accuracy
 - II. Statics of Particles
 - A. Forces in a Plane
 - 1. Forces on a Particle, Resultant of Two Forces
 - 2. Vectors
 - 3. Addition of Vectors
 - 4. Resultant of Several Concurrent Forces
 - 5. Resolutions of a Force into Components
 - 6. Rectangular Components of a Force. Unit Vectors
- 7. Addition of Forces by Summing x and y components

- 8. Equilibrium of a Particle
- 9. Newton's First Law of Motion
- 10. Problems Involving the Equilibrium of a Particle. Free-Body

Diagram.

- **B.** Forces in Space
 - 1. Rectangular Components of a Force in Space
 - 2. Force Defined by its Magnitude and Two Points on its Line of Action
 - **3.** Addition of Concurrent Forces in Space
 - 4. Equilibrium of a Particle in Space
- III. Rigid Bodies
 - A. Equivalent Systems of Force
 - 1. Rigid Bodies. External and Internal Forces
 - 2. Principle of Transmissibility. Equivalent Forces
 - 3. Vector Product of Two Vectors
 - 4. Vector Products Expressed in Terms of Rectangular Components
 - 5. Moment of a Force About a Point
 - 6. Varignon's Theorem
 - 7. Rectangular Components of the Moment of a Force
 - 8. Scalar Product of Two Vectors
 - 9. Mixed Triple Product of Three Vectors
 - 10. Moment of a Force about a Given Axis
 - 11. Moment of a Couple
 - 12. Equivalent Couples
 - 13. Couples May Be Represented By Vectors
 - 14. Reduction of a System of Forces to One Force and One Couple
 - **15. Equivalent System of Forces**
 - 16. Further Reduction of a System of Forces
- **IV. Equilibrium of Rigid Bodies**
 - A. Equilibrium of Rigid Bodies
 - 1. Rigid Body in Equilibrium
 - 2. Free-Body Diagram
 - **B.** Equilibrium in Two Dimensions
 - 1. Reactions at Supports and Connections for a Two-Dimensional Structure
 - 2. Equilibrium of a Rigid Body in Two Dimensions
 - 3. Statically Indeterminate Reactions. Partial Constraints
 - 4. Equilibrium of a Two-Force Body
 - 5. Equilibrium of a Three-Force Body
 - C. Equilibrium in Three Dimensions
 - 1. Reactions at Supports and Connections for a Three-Dimensional

Structure

2. Equilibrium of a Rigid Body in Three Dimensions

- V. Distributed Forces: Centroids and Centers of Gravity
 - A. Areas and Lines
 - 1. Center of Gravity of a Two-Dimensional Body
 - 2. Centroids of Areas and Lines
 - 3. Composite Plates and Wires
 - 4. Determination of Centroids by Integration
 - 5. Theorems of Pappas-Guldinus
 - **B.** Volumes
 - 1. Center of Gravity of a Three-Dimensional Body. Centroid of a Volume
 - 2. Composite Bodies
 - **3.** Determination of Centroids of Volumes By Integration

VI. Analysis of Structures

- A. Analysis of Structures
 - 1. Internal Forces. Newton's Third Law
- **B.** Trusses
 - 1. Definition of a Truss
 - 2. Simple Trusses
 - 3. Analysis of Trusses by the Methods of Joints
- C. Frames and Machines
 - 1. Structures Containing Multiforce Members
 - 2. Analysis of a Frame
 - **3.** Frames Which Cease to be Rigid When Detached From Their Supports
 - 4. Machines

VII. Friction

- A. Friction
 - 1. Introduction
 - 2. The Laws of Dry Friction. Coefficients of Friction
 - 3. Angles of Friction
 - 4. Problems Involving Dry Friction
 - 5. Wedges
 - 6. Square-Threaded Screws
 - 7. Journal Bearings. Axle Friction
 - 8. Thrust Bearings. Disk Friction
 - 9. Wheel Friction. Rolling Resistance
 - **10. Belt Friction**

VIII. Distributed Forces: Moments of Inertia

A. Moments of Inertia of Area

- 1. Second Moment, Or moment of Inertia, or an Area
 - 2. Determination of the Moment of Inertia of an Area By Integration
 - 3. Polar Moment of Inertia
 - 4. Radius of Gyration of an Area
 - 5. Parallel-Axis Theorem
 - 6. Moments of Inertia of Composite Areas
 - IX. Forces in Beams and Cables
 - A. Introduction. Internal Forces in Members
 - B. Beams
 - 1. Various Types of Loading and Support
 - 2. Shear and Bending Moment in a Beam
 - 3. Shear and Bending Moment Diagrams
 - 4. Relations Between Load, Shear, and Bending Moment

Q. <u>LABORATORY OUTLINE</u>: None Yes x

- 1. Statics of Particles
- 2. Rigid Bodies
- **3.** Equilibrium of Rigid Bodies
- 4. Centriod and Centers of Gravity
- 5. Friction
- 6. Moments of Inertia
- 7. Forces in Beams and Cables