STATE UNIVERSITY OF NEW YORK COLLEGE OF TECHNOLOGY CANTON, NEW YORK

MASTER SYLLABUS

COURSE NUMBER – COURSE NAME ENGS 302 – ENGINEERING DYNAMICS II

Created by: Dr. Lucas Craig

Updated by: Dr. Lucas Craig

Canino School of Engineering Technology

Department: MKTX

Semester/Year: Fall 2021

A. <u>TITLE</u>: Engineering Dynamics II

B. <u>COURSE NUMBER</u>: ENGS 302

C. <u>CREDIT HOURS</u>: (Hours of Lecture, Laboratory, Recitation, Tutorial, Activity)

Credit Hours: 3 # Lecture Hours: 3 per week # Lab Hours: per week Other: per week

Course Length: 15 Weeks

D. <u>WRITING INTENSIVE COURSE</u>: Yes \square No \boxtimes

E. <u>GER CATEGORY</u>: None: Yes: GER *If course satisfies more than one*: GER

F. <u>SEMESTER(S) OFFERED</u>: Fall Spring Fall & Spring

G. <u>COURSE DESCRIPTION</u>:

In this second dynamics course, students learn about planar two-dimensional rigid body kinematics, kinetics of rigid bodies—force and acceleration, work and energy, and impulse, momentum, and three-dimensional motion. An introduction to vibrations is also provided.

H. <u>**PRE-REQUISITES</u>**: None \boxtimes Yes \boxtimes If yes, list below:</u>

ENGS 202 or MECH 301

<u>CO-REQUISITES</u>: None Yes If yes, list below:

I. <u>STUDENT LEARNING OUTCOMES</u>: (see key below)

By the end of this course, the student will be able to:

<u>Course Student Learning Outcome</u> [SLO]	<u>Program Student Learning</u> <u>Outcome</u> [PSLO]	<u>GER</u> [If Applicable]	<u>ISLO & SUBSETS</u>	
Solve two-dimensional kinematic motion of rigid bodies.			2-Crit Think ISLO ISLO	PS Subsets Subsets Subsets
Solve force and acceleration for two- dimensional rigid bodies.			2-Crit Think ISLO ISLO	PS Subsets Subsets Subsets
Solve kinetic and potential energy problems through conservation of energy for two- dimensional rigid bodies.			2-Crit Think ISLO ISLO	PS Subsets Subsets Subsets
Solve impulse and momentum for two- dimensional rigid bodies.			2-Crit Think ISLO ISLO	PS Subsets Subsets Subsets
Analyze kinematics and kinetics for three- dimensional rigid bodies.			2-Crit Think ISLO ISLO	PS Subsets Subsets Subsets
			2-Crit Think ISLO ISLO	PS Subsets Subsets Subsets

	2-Crit Think ISLO ISLO	PS Subsets Subsets Subsets
	2-Crit Think ISLO ISLO	PS Subsets Subsets Subsets
	ISLO ISLO ISLO	Subsets Subsets Subsets Subsets
	ISLO ISLO ISLO	Subsets Subsets Subsets Subsets

KEY	Institutional Student Learning Outcomes [ISLO 1 – 5]		
ISLO	ISLO & Subsets		
#			
1	Communication Skills		
	Oral [O], Written [W]		
2	Critical Thinking		
	Critical Analysis [CA], Inquiry & Analysis [IA], Problem		
	Solving [PS]		
3	Foundational Skills		
	Information Management [IM], Quantitative Lit,/Reasoning		
	[QTR]		
4	Social Responsibility		
	Ethical Reasoning [ER], Global Learning [GL],		
	Intercultural Knowledge [IK], Teamwork [T]		
5	Industry, Professional, Discipline Specific Knowledge and		
	Skills		

*Include program objectives if applicable. Please consult with Program Coordinator

J. <u>APPLIED LEARNING COMPONENT:</u>

Yes 🛛 No 🗌

If YES, select one or more of the following categories:

Classroom/LabCivic EngagementInternshipCreative Works/Senior ProjectClinical PlacementResearchPracticumEntrepreneurshipService Learning(program, class, project)Community ServiceCommunity Service

K. <u>TEXTS</u>:

Hibbeler, R. Engineering Mechanics: Dynamics (14th edition). New York: Prentice Hall, 2016.

L. <u>REFERENCES</u>:

N/A

- M. <u>EQUIPMENT</u>: None Needed:
- N. **<u>GRADING METHOD</u>**: A-F

0. <u>SUGGESTED MEASUREMENT CRITERIA/METHODS</u>:

Homework	25%
Exams (3)	60%
Final Exam / Project	15%

P. <u>DETAILED COURSE OUTLINE</u>:

I. Planar Kinematics of Rigid Bodies A. Planar rigid body motion

II. Planar Kinetics of Rigid Bodies: Force, Mass, and Acceleration A. Mass Moment of Inertia B. Kinetic Equations of Motion: Translation, Rotation about a Fixed Axis, General Planar Motion

- III. Planar Kinetics of Rigid Bodies: Work and Energy
 - A. Kinetic Energy
 - **B.** Principle of Work and Energy
 - **C.** Conservation of Energy
- IV. Three-Dimensional Kinematics and Kinetics of Rigid Bodies
 - A. Rotation about a Fixed Point
 - **B.** Angular Momentum
 - C. Kinetic Energy

V. Introduction to Vibrations A. Undamped Natural Frequency B. Energy Methods

Q. <u>LABORATORY OUTLINE</u>: None X Yes