STATE UNIVERSITY OF NEW YORK COLLEGE OF TECHNOLOGY CANTON, NEW YORK

MASTER SYLLABUS

COURSE NUMBER – COURSE NAME ENGS 341 – THEORETICAL FLUIDS

Created by: Dr. Lucas Craig

Updated by:

Canino School of Engineering Technology

Department: MKTX

Semester/Year: Spring 2019

A. <u>TITLE</u>: Theoretical Fluids

B. <u>COURSE NUMBER</u>: ENGS 341

C. <u>CREDIT HOURS</u>: (Hours of Lecture, Laboratory, Recitation, Tutorial, Activity)

Credit Hours: 3 # Lecture Hours: 3 per week # Lab Hours: per week Other: per week

Course Length: 15 Weeks

D. <u>WRITING INTENSIVE COURSE</u>: Yes \square No \boxtimes

E. <u>GER CATEGORY</u>: None: Yes: GER *If course satisfies more than one*: GER

F. <u>SEMESTER(S) OFFERED</u>: Fall Spring Fall & Spring

G. <u>COURSE DESCRIPTION</u>:

Students in this course develop knowledge of fluid mechanics under static and dynamic applications. Properties of fluids, pressure, fluid statics, Bernoulli's, fluid kinematics, differential representation of conservation of mass and momentum, dimensional analysis, flow rate, minor losses in piping systems, and an introduction to the Navier-Stokes equations are addressed.

H. <u>**PRE-REQUISITES</u>**: None \boxtimes Yes \boxtimes If yes, list below:</u>

ENGS 201 and MATH 364

<u>CO-REQUISITES</u>: None Yes If yes, list below:

I. <u>STUDENT LEARNING OUTCOMES</u>: (see key below)

By the end of this course, the student will be able to:

<u>Course Student Learning Outcome</u> [SLO]	<u>Program Student Learning</u> <u>Outcome</u> [PSLO]	<u>GER</u> [If Applicable]	ISLO & SUBSI	<u>ETS</u>
Analyze hydrostatic forces acting on planar and curved surfaces.			2-Crit Think ISLO ISLO	PS Subsets Subsets Subsets
Apply Bernoulli's equation to engineering problems.			2-Crit Think ISLO ISLO	PS Subsets Subsets Subsets
Distinguish between streamlines, streaklines, pathlines, and timelines.			2-Crit Think ISLO ISLO	PS Subsets Subsets Subsets
Formulate the conservation of mass principle and apply to engineering systems.			2-Crit Think ISLO ISLO	PS Subsets Subsets Subsets
Determine the forces acting on a control volume and apply them to Newton's 2nd law.			2-Crit Think ISLO ISLO	PS Subsets Subsets Subsets
Apply Reynolds and other non-dimensional numbers in the solution of fluid problems.			2-Crit Think ISLO ISLO	PS Subsets Subsets Subsets

Determine Reynolds number and differentiate between laminar and turbulent flow. Use Darcy's equation to calculate the friction losses of pipes and fittings.	2-Crit Think ISLO ISLO	PS Subsets Subsets Subsets
Discriminate when to simplify the Navier- Stokes equations and demonstrate its proper use.	2-Crit Think ISLO ISLO	PS Subsets Subsets Subsets
	ISLO ISLO ISLO	Subsets Subsets Subsets Subsets
	ISLO ISLO ISLO	Subsets Subsets Subsets Subsets

KEY	Institutional Student Learning Outcomes [ISLO 1 – 5]		
ISLO	ISLO & Subsets		
#			
1	Communication Skills		
	Oral [O], Written [W]		
2	Critical Thinking		
	Critical Analysis [CA], Inquiry & Analysis [IA], Problem		
	Solving [PS]		
3	Foundational Skills		
	Information Management [IM], Quantitative Lit,/Reasoning		
	[QTR]		
4	Social Responsibility		
	Ethical Reasoning [ER], Global Learning [GL],		
	Intercultural Knowledge [IK], Teamwork [T]		
5	Industry, Professional, Discipline Specific Knowledge and		
	Skills		

*Include program objectives if applicable. Please consult with Program Coordinator

J. <u>APPLIED LEARNING COMPONENT:</u>

Yes 🛛 No 🗌

If YES, select one or more of the following categories:

Classroom/Lab
Internship
Clinical Placement
Practicum
Service Learning
Community Service
Classroom/Lab
Civic Engagement
Creative Works/Senior Project
Research
Entrepreneurship
(program, class, project)

K. <u>TEXTS</u>:

Cengel, Yunus A. and Cimbala, John M. Fluid Mechanics (3rd edition). New York: McGraw-Hill, 2014.

L. <u>REFERENCES</u>:

N/A

M. <u>EQUIPMENT</u>: None Needed:

N. **<u>GRADING METHOD</u>**: A-F

0. <u>SUGGESTED MEASUREMENT CRITERIA/METHODS</u>:

Homework	25%
Exams (3)	60%
Final Exam / Project	15%

P. <u>DETAILED COURSE OUTLINE</u>:

- I. Basic fluid mechanics
- A. Fluid mass & weight
- 1. Density
- 2. Specific weight
- B. Ideal gas laws
- C. Viscosity
- D. Compressibility of fluids and speed of sound
- E. Pressure
- 1. Vapor
- 2. Surface tension
- II. Fluid Statics
- A. Pressure
- 1. Incompressible
- 2. Compressible
- B. Pressure measurement
- 1. Manometry

- 2. Gauges
- 3. Electronics
- C. Hydrostatic forces
- D. Archimedes' Principles (Buoyancy)
- III. Fluid Kinematics
- A. Newton's Second Law
- **B.** Flow patterns and flow visualization
- C. Vorticity and rotationality
- D. Reynolds Transport Theorem
- IV. Mass and energy analysis of flow systems
- A. Continuity equation
- B. Mechanical energy and efficiency
- C. Bernoulli equation
- D. Energy equation
- V. Momentum analysis of flow systems
- A. Linear and angular momentum
- **B.** Application of momentum equations
- VI. Dimensionless analysis
- A. Buckingham Pi Theorem
- **B.** Dimensionless groups
- VII. Internal flows
- A. Characteristics of laminar and turbulent flow, wall friction, and pressure drop
- **B.** Flow rate and velocity measurements
- VIII. Differential analysis
- A. Continuity equation
- **B.** Stream function
- C. Navier-Stokes equations
- **D.** Flow between parallel plates
- E. Steady flow in round tube

Q. <u>LABORATORY OUTLINE</u>: None X Yes