STATE UNIVERSITY OF NEW YORK COLLEGE OF TECHNOLOGY CANTON, NEW YORK

MASTER SYLLABUS

COURSE NUMBER – COURSE NAME ENGS 350 – MECHANICS OF MACHINE ELEMENTS

Created by: Dr. Lucas Craig

Updated by: Dr. Lucas Craig

Canino School of Engineering Technology

Department: MKTX

Semester/Year: Fall 2022

A. <u>TITLE</u>: Mechanics of Machine Elements

B. <u>COURSE NUMBER</u>: ENGS 350

C. CREDIT HOURS: (Hours of Lecture, Laboratory, Recitation, Tutorial, Activity)

Credit Hours: 4
Lecture Hours: 2 hr per week
Lab Hours: per week
Other: per week

Course Length: 15 Weeks

D. <u>WRITING INTENSIVE COURSE</u>: Yes \square No \boxtimes

E. <u>GER CATEGORY</u>: None: Yes: GER *If course satisfies more than one*: GER

F. <u>SEMESTER(S) OFFERED</u>: Fall Spring Fall & Spring

G. <u>COURSE DESCRIPTION</u>:

Students in this course develop fundamentals of mechanics of machine design. Students apply their knowledge of statics, strengths, and materials to the designing of machine components.

H. <u>**PRE-REQUISITES</u>**: None \boxtimes Yes \boxtimes If yes, list below:</u>

ENGS 203

<u>CO-REQUISITES</u>: None Yes If yes, list below:

I. <u>STUDENT LEARNING OUTCOMES</u>: (see key below)

By the end of this course, the student will be able to:

<u>Course Student Learning Outcome</u> [SLO]	<u>Program Student Learning</u> <u>Outcome</u> [PSLO]	<u>GER</u> [If Applicable]	<u>ISLO & SUBS</u>	<u>ETS</u>
Perform static load analysis on machine elements.			2-Crit Think ISLO ISLO	PS Subsets Subsets Subsets
Select appropriate material for a mechanical machine element.			2-Crit Think 3-Found Skills ISLO	PS Subsets Subsets Subsets
Apply statics and strengths to determine stress on shafts, screws, bearings, gears, and other machine elements.			2-Crit Think ISLO ISLO	PS Subsets Subsets Subsets
Apply a variety of failure theories to a design analysis.			2-Crit Think ISLO ISLO	PS Subsets Subsets Subsets
Design a mechanical drive system using belts, chains drives, or gears.			2-Crit Think ISLO ISLO	PS Subsets Subsets Subsets
Apply Mohr's circle for combined stresses.			2-Crit Think ISLO ISLO	PS Subsets Subsets Subsets

ISLO ISLO ISLO	Subsets Subsets Subsets Subsets
ISLO ISLO ISLO	Subsets Subsets Subsets Subsets
ISLO ISLO ISLO	Subsets Subsets Subsets Subsets
ISLO ISLO ISLO	Subsets Subsets Subsets Subsets

KEY	Institutional Student Learning Outcomes [ISLO 1 – 5]		
ISLO	ISLO & Subsets		
#			
1	Communication Skills		
	Oral [O], Written [W]		
2	Critical Thinking		
	Critical Analysis [CA], Inquiry & Analysis [IA], Problem		
	Solving [PS]		
3	Foundational Skills		
	Information Management [IM], Quantitative Lit,/Reasoning		
	[QTR]		
4	Social Responsibility		
	Ethical Reasoning [ER], Global Learning [GL],		
	Intercultural Knowledge [IK], Teamwork [T]		
5	Industry, Professional, Discipline Specific Knowledge and		
	Skills		

*Include program objectives if applicable. Please consult with Program Coordinator

J. <u>APPLIED LEARNING COMPONENT:</u>

Yes 🛛 No 🗌

If YES, select one or more of the following categories:

Classroom/LabCivic EngagementInternshipCreative Works/Senior ProjectClinical PlacementResearchPracticumEntrepreneurshipService Learning(program, class, project)Community ServiceCommunity Service

K. <u>TEXTS</u>:

- Robert L Mott, Edward M. Vavrek and Jyhwen Wang Machine Elements in Mechanical Design, 6th ed., Pearson.
- L. <u>REFERENCES</u>:

N/A

- M. <u>EQUIPMENT</u>: None Needed:
- N. **<u>GRADING METHOD</u>**: A-F

0. <u>SUGGESTED MEASUREMENT CRITERIA/METHODS</u>:

Homework	25%
Exams (3)	60%
Final Exam / Project	15%

P. <u>DETAILED COURSE OUTLINE</u>:

- I. Introduction to Basic Design
- a) Materials
- b) Load and Stress Analysis
- c) Deflection and Stiffness
- II. Failure Prevention
- a) Static Loading
- b) Variable Loading
- III. Design of Mechanical Elements
- a) Shafts
- b) Screws, Fasteners
- c) Welding, Bonding
- d) Springs
- e) Bearings
- f) Gears
- g) Clutches, Brakes, Couplings, Flywheels
- h) Belts and Chains

- i) k)
- Keys Selection of Seals

LABORATORY OUTLINE: None 🖂 Yes 🗌 Q.