STATE UNIVERSITY OF NEW YORK COLLEGE OF TECHNOLOGY CANTON, NEW YORK

MASTER SYLLABUS

GMMD 351 3D Animation

Created by: Kathleen Mahoney Updated by: Kathleen Mahoney

> CANINO SCHOOL OF ENGINEERING TECHNOLOGY GRAPHIC AND MULTIMEDIA DESIGN FALL 2018

A. <u>TITLE</u>: 3D Animation

B. <u>COURSE NUMBER</u>: GMMD 351

C. <u>CREDIT HOURS</u>: (Hours of Lecture, Laboratory, Recitation, Tutorial, Activity)

Credit Hours: 3 # Lecture Hours: 3 per week # Lab Hours: per week Other: per week

Course Length: 15 Weeks

D. <u>WRITING INTENSIVE COURSE</u>: No

E. <u>GER CATEGORY</u>:

F. <u>SEMESTER(S) OFFERED</u>: Spring

G. <u>COURSE DESCRIPTION</u>:

This course is an overview of the techniques and history 3D animation, including character design, modeling, storyboarding, rigging and animating a scene. Students engage in hands-on projects involving the development of hand-drawn and computer-generated animation. Emphasis is placed on understanding the place of animation in the context of the film, television, internet, and gaming industries, project management, and the development of a personal animation style.

H. <u>PRE-REQUISITES/CO-REQUISITES</u>:

- a. Pre-requisite(s): GMMD 102 and GMMD 200
- b. Co-requisite(s):
- c. Pre- or co-requisite(s):

Course Student Learning Outcome PSLO GER ISLO ISL01 Integrate theories of narrative, immersion, 5 PSLO₁ and character development with analysis Student assessment addresses composition, form, of animated products. function, and design. Assess current trends in animation PSLO 4 2 [CA][IA] [PS] production. Public display of student work demonstrates attention to professional detail. Compare the immersive qualities of 2 [CA][IA] [PS] PSLO₆ various techniques of animation. Student documentation demonstrates awareness of design process (brainstorming, research, problem definition, finalization). Develop a series of animated characters. PSLO 5 1 [O, W] Public display of student work demonstrates an ability to clearly articulate the purpose of the design to the audience.

I. <u>STUDENT LEARNING OUTCOMES</u>:

Design and create a variety of animated projects, culminating in a finalized animated short.	PSLO 5 Public display of student work demonstrates an ability to clearly articulate the purpose of the design to the audience.	1 [O, W]
Evaluate student-and professionally- produced multimedia products.	PSLO 2 Student design brief or contract demonstrates clear intention of purpose and criteria for assessment.	1 [O, W]

KEY	Institutional Student Learning Outcomes [ISLO
	<u>1-5</u>
ISLO	ISLO & Subsets
#	
1	Communication Skills
	Oral [O], Written [W]
2	Critical Thinking
	Critical Analysis [CA] , Inquiry & Analysis [IA] ,
	Problem Solving [PS]
3	Foundational Skills
	Information Management [IM], Quantitative
	Lit,/Reasoning [QTR]
4	Social Responsibility
	Ethical Reasoning [ER], Global Learning [GL],
	Intercultural Knowledge [IK], Teamwork [T]
5	Industry, Professional, Discipline Specific
	Knowledge and Skills

J. <u>APPLIED LEARNING COMPONENT:</u>

Yes X No

K. <u>TEXTS:</u>

Introducing Autodesk Maya 2016: Autodesk Official Press By Dariush Derakhshani ISBN-13: 978-1119059639 ISBN-10: 1119059631

L. <u>REFERENCES</u>:

- M. <u>EQUIPMENT</u>:
- N. **<u>GRADING METHOD</u>**: A-F

O. <u>SUGGESTED MEASUREMENT CRITERIA/METHODS</u>:

- Exams
- Quizzes
- Character studies
- Motion study
- Animated short
- Historical research/emulation project
- Papers

• Participation

P. <u>DETAILED COURSE OUTLINE</u>:

- I. Introduction to Computer Graphics and 3D
 - A. 3D Computer Graphics
 - B. The Stages of Production
 - C. Basic Film Concepts

II. User Interface

- A. Preproduction Process
- B. Production Process
- C. Hierarchy and Object Structure

III. The Autodesk Maya Interface

- A. Navigating in Maya
- B. Exploring the Maya Layout
- C. Mapping Reference Planes

IV. Beginning Polygonal Modeling

- A. Polygon Basics
- B. Polygon Editing Tools
- C. Polygon Mesh

V. Modeling with NURBs

- A. Using NURB surfacing
- B. Patch Modeling
- C. The Lattice Deformer

VI. Practical Modeling

A. Modeling an Object

VII. Shading and Texturing

- A. Shader Types
- B. Shader Attributes
- C. Textures and Surfaces

VIII. Introduction to Animation

- A. Keyframe Animation
- B. Replacing an Object

IX. Animation Kinematics

- A. Skeletons and Kinematics
- B. Basic Kinematic Relationships
- C. Character Rigging

X. Lighting

- A. Ray Tracing
- B. Mental Ray
- C. Lighting Effects

XI. Rendering

- A. Reflections and Refractions
- B. Using Cameras
- C. Ambient Occlusion

XII. Dynamics and Effects

- A. Dynamics Overview
- B. Rigid body and Soft Dynamics
- C. Particle Effects

Q. <u>LABORATORY OUTLINE</u>:

1. Gain a working understanding of the user interface

- a. How to navigate in 3D space
- b. Learn project structure in Maya and how to create projects

2. Recognize and use Maya UI Elements

- a. Maya view panels and windows
- b. Transforming objects in 3D space
- c. Polygon modeling techniques

3. Planning Better Models

- a. Editing polygon geometry
- b. Modeling Toolkit Interface

4. Beginning Polygonal Modeling

- a. Polygon Editing Tools
- b. Polygon Mesh

5. Use surface techniques: Loft, Set Planar, Revolve

- a. Convert NURBS geometry
- b. Create polygon meshes

6. Manipulating curves to create poly meshes with Revolve Surface

- a. Create a shape with path extrusions
- b. Work in Hypershade to assign image maps to objects in the scene

7. Working with Shaders

a. Create and edit shader networks in the Hypershade window

8. Introduction to Animation

- a. Setting keyframes
- b. Working with principles of squash, stretch, anticipation and follow-through

9. Animation Kinematics

- a. Creating and manipulating a skeleton
- b. Creating a walk cycle
- c. Rig a simple character for animating
- 10. Lighting
 - a. Analyze light attributes and choose appropriate light for a scene
 - b. Create mood and realism with shadow maps

11. Setting Up a Scene for Output through Rendering

- a. Choosing resolution and other settings
- b. Working with mental ray
- c. Applying a displacement map

12. Creating Dynamics and Effects

- a. Keyframe animated passive rigid body objects
- b. Rendering an object and a scene