STATE UNIVERSITY OF NEW YORK COLLEGE OF TECHNOLOGY CANTON, NEW YORK

MASTER SYLLABUS

COURSE NUMBER – COURSE NAME HVAC103 – Hydronics

Created by: Stan Skowronek

Updated by: Paul Todd

Canino School of Engineering Technology

Department: Mechanical & Energy Systems

Semester/Year: Fall 2023

A.	TITLE: Hydronics
В.	COURSE NUMBER: HVAC103
C.	CREDIT HOURS: 3 credit hour(s) per week for 15 weeks
	 ☑ One hour (50 minutes) of lecture per week -3 ☐ Two to three hours of lab or clinical per week ☐ Two hours of recitation per week ☐ 40 hours of internship
D.	WRITING INTENSIVE COURSE: Yes \(\text{No } \text{No } \equiv
Е.	GER CATEGORY: None: Ves: GER If course satisfies more than one: GER
F.	SEMESTER(S) OFFERED: Fall Spring Fall & Spring
G.	COURSE DESCRIPTION:
	ndamentals of hydronic distribution systems will be covered in this course. Students study leat transfer and the use of hydronics in residential and commercial settings.
н.	PRE-REQUISITES: None Yes If yes, list below:
	CO-REQUISITES : None ⊠ Yes ☐ If yes, list below:

I. <u>STUDENT LEARNING OUTCOMES</u>: (see key below)

By the end of this course, the student will be able to:

Course Student Learning Outcome [SLO]	Program Student Learning Outcome [PSLO]	<u>GER</u> [If Applicable]	ISLO & SUBSE	
1.Explain the process of heat transfer		N/A	3-Found Skills ISLO ISLO	QTR Subsets Subsets Subsets
2. Describe types of hydronic distribution systems		N/A	3-Found Skills ISLO ISLO	QTR Subsets Subsets Subsets
3.Identify chimney types and proper application		N/A	3-Found Skills ISLO ISLO	QTR None Subsets Subsets
4. Introduction to the control and power circuits for hydronic systems		N/A	3-Found Skills ISLO ISLO	QTR Subsets Subsets Subsets
		N/A	ISLO ISLO ISLO	Subsets Subsets Subsets Subsets
		N/A	ISLO ISLO ISLO	Subsets Subsets Subsets Subsets

ISLO ISLO ISLO	Subsets Subsets Subsets Subsets
ISLO ISLO ISLO	Subsets Subsets Subsets Subsets
ISLO ISLO ISLO	Subsets Subsets Subsets Subsets
ISLO ISLO ISLO	Subsets Subsets Subsets Subsets

KEY	Institutional Student Learning Outcomes [ISLO 1 – 5]
ISLO	ISLO & Subsets
#	
1	Communication Skills
	Oral [O], Written [W]
2	Critical Thinking
	Critical Analysis [CA] , Inquiry & Analysis [IA] , Problem
	Solving [PS]
3	Foundational Skills
	Information Management [IM], Quantitative Lit,/Reasoning
	[QTR]
4	Social Responsibility
	Ethical Reasoning [ER], Global Learning [GL],
	Intercultural Knowledge [IK], Teamwork [T]
5	Industry, Professional, Discipline Specific Knowledge and
	Skills

^{*}Include program objectives if applicable. Please consult with Program Coordinator

J.	APPLIED LEARNING COMPONENT:	Yes 🔀	No 🔲
	If YES, select one or more of the following categor	ies:	
\boxtimes	Classroom/Lab		
	Internship		
	Clinical Placement		
	Practicum		
	Service Learning		
	Community Service		
	Civic Engagement		
	Creative Works/Senior Project		
	Research		
	Entrepreneurship		
	(program, class, project)		

K. $\underline{\text{TEXTS}}$:

Bracciano, A., Bracciano, D., Bracciano, G., Althouse, A. D., & Turnquist, C. H. (2019). Modern Refirgeration and Air Conditioning, 21st Edition. Goodheart-Willcox.

L. <u>REFERENCES</u>:

Cooper, William B., Raymond E. Lee, Raymond A. Quinlan, Martin W. Sirowatka, Warm Air Heating for Climate Control, 5th Edition, Prentice Hall, 2003

- M. **EQUIPMENT:** None Needed: Technical enhanced classroom
- N. **GRADING METHOD**: A-F

O. <u>SUGGESTED MEASUREMENT CRITERIA/METHODS</u>:

Exams, Quizzes, and Assignments

P. DETAILED COURSE OUTLINE:

- I. Basic Theory of Heating Systems
- A. Heat Transfer
- i. Conduction,
- ii. Convection,
- iii. Radiation
- **B.** Insulation
- C. Change of State
- i. Water
- ii. Steam
- iii. Ice
- II. Hydronic systems
- A. Pumps
- **B.** Pipes sizing
- C. Heat emitters
- D. Accessories
- IV. Chimney
- A. Natural gas and propane
- B. Fuel oil
- C. Wood and coal
- D. Direct venting
- V. Troubleshooting
- A. Customer interaction
- **B.** Sequence of operation
- C. Electrical circuits
- D. Ladder diagrams

Q. <u>LABORATORY OUTLINE</u> : None X Yes
