STATE UNIVERSITY OF NEW YORK COLLEGE OF TECHNOLOGY CANTON, NEW YORK

MASTER SYLLABUS

Math 101 – Applied College Mathematics

Created by: Frederick Saburro

Updated by: Frederick Saburro

Canino School of Engineering Technology

Department: Mathematics

Semester/Year: Spring/2020

- A. <u>TITLE</u>: Applied College Mathematics
- B. COURSE NUMBER: MATH 101
- C. <u>CREDIT HOURS</u>:

Credit Hours: 4

Lecture Hours: 4 per week Lab Hours: 0 per week

Course Length: 15 weeks

- **D.** WRITING INTENSIVE COURSE: No
- E. **GER CATEGORY**: None:
- F. <u>SEMESTER(S) OFFERED</u>: Fall
- G. <u>COURSE DESCRIPTION</u>:

This course is designed to prepare students for success in technical and pre-engineering technology programs. It assumes an algebraic background at an introductory level. The course connects mathematical concepts and procedures to real-life applications relevant to a variety of technical trade fields. Applications using algebra concepts are stressed in this course.

- H. PRE-REQUISITES: None
- I. <u>CO-REQUISITES</u>: None

J. <u>STUDENT LEARNING OUTCOMES</u>:

By the end of this course, the student will be able to:

Course Student Learning Outcome [SLO]	Program Student Learning Outcome [PSLO]	GER [If Applicable]	ISLO & SUBSETS	
Perform multistep calculations with the aid of a calculator.			3-Foundational Skills	QTR
2. Use Dimensional Analysis to perform basic conversions for units of measurement within and between the English and Metric systems.			3-Foundational Skills	QTR
3. Graph linear equations.			3-Foundational Skills	QTR
4. Solve multi-step equations, manipulate formulas, and solve a system of linear equations.			3-Foundational Skills	QTR
5. Organize the solution to a problem and use estimation to determine the reasonableness of the answer.			3-Foundational Skills	QTR

KEY	<u>Institutional Student Learning Outcomes [ISLO 1 – 5]</u>					
ISLO	ISLO & Subsets					
#						
1	Communication Skills					
	Oral [O], Written [W]					
2	Critical Thinking					
	Critical Analysis [CA], Inquiry & Analysis [IA] , Problem					
	Solving [PS]					
3	Foundational Skills					
	Information Management [IM], Quantitative Lit, /Reasoning					
	[QTR]					
4	Social Responsibility					
	Ethical Reasoning [ER], Global Learning [GL],					
	Intercultural Knowledge [IK], Teamwork [T]					
5	Industry, Professional, Discipline Specific Knowledge and					
	Skills					

K. APPLIED LEARNING COMPONENT: No

L. $\underline{\text{TEXTS}}$:

Carman and Saunders (2014), *Mathematics for the Trades: A Guided Approach (10th Ed.)*. Boston, MA: Pearson Education.

Other sources.

- M. <u>REFERENCES</u>: N/A
- N. **EQUIPMENT**: None
- **O. GRADING METHOD:** A F

P. <u>SUGGESTED MEASUREMENT CRITERIA/METHODS</u>:

- Homework
- Quizzes
- Exams
- Participation
- Projects

Q. <u>DETAILED COURSE OUTLINE</u>:

- I. Ratio, Proportion, and Percent
 - A. Review of ratio and proportion
 - B. Review of percent
 - C. Applications of percent calculations, to include:
 - 1. Calculate work orders
 - 2. Determine energy efficiency
 - D. Applications of ratio and proportion, to include:
 - 1.Oil to fuel ratios
 - 2. Compression ratios
 - 3. Gear ratios

II. Measurement

- A. Working with measurement numbers
- B. Read a ruler, a dial and Vernier caliper, and a micrometer
- C. Decimal equivalences of quarters and eights
- D. English units and unit conversion
- E. Metric units and unit conversion
- F. English-Metric conversions and Metric-English conversions
- G. Inch-lb, foot-lb, and Nm
- H. Applications

III. Algebra Topics

- A. Exponents and square roots
- B. Order of operations
- C. Scientific notation
- D. Evaluating algebraic expressions and formulas
- E. Solve simple equations involving one variable
- F. Solve more complex equations:
 - 1. With parenthesis
 - 2. Variables on both sides of an equation
- G. Manipulating formulas,
- H. Applications, to include:
 - 1. Kirchhoff's Law
 - 2. Ideal Gas Law
 - 3. Boyle's Law

IV. Practical Plane Geometry

- A. Labeling, measuring, and drawing angles
- B. Area and perimeter of polygons
- C. Pythagorean theorem
- D. Circumference and area of circles
- E. Applications, to include:
 - 1. Cam duration
 - 2. Cam overlap

V. Solid Figures – Volume and Surface Area

- A. Prisms and cylinders
- B. Pyramids and cones
- C. Spheres
- D. Cones
- E. Applications, to include:
 - 1. Calculate displacement when bore and/or stroke is varied.
 - 2. Ideal Gas Law

VI. Trigonometry

- A. Angles
- B. Trigonometric ratios
- C. Solving right triangles
- D. Applications, to include:
 - 1.Sine Bar

VII. Systems of equations

- A. Solve by graphing
- B. Solve by substitution
- C. Solve by elimination
- D. Applications

VIII. Hexadecimal

- A. Change to Base 2
- B. Change to Base 10
- C. Applications

IX. Switching Circuits

- A. Use symbolic statements to represent Series and Parallel Circuits
- B. Draw Switching Circuits that represent symbolic statements
- C. Equivalent Circuits

R. <u>LABORATORY OUTLINE</u>: None

STATE UNIVERSITY OF NEW YORK COLLEGE OF TECHNOLOGY CANTON, NEW YORK

MASTER SYLLABUS

Math 101 – Applied College Mathematics

Created by: Frederick Saburro

Updated by: Frederick Saburro

Canino School of Engineering Technology

Department: Mathematics

Semester/Year: Spring/2019

- A. <u>TITLE</u>: Applied College Mathematics
- B. **COURSE NUMBER:** Math 101
- C. <u>CREDIT HOURS</u>: 3 credit hour(s) per week for 15 weeks
- **D.** WRITING INTENSIVE COURSE: No
- E. **GER CATEGORY**: None:
- F. <u>SEMESTER(S) OFFERED</u>: Fall
- G. <u>COURSE DESCRIPTION</u>:

This course is designed to prepare students for success in technical and pre-engineering technology programs. It assumes an algebraic background at an introductory level. The course connects mathematical concepts and procedures to real-life applications relevant to a variety of technical trade fields. Applications using algebra concepts are stressed in this course.

H. PRE-REQUISITES: None

CO-REQUISITES: None

I. <u>STUDENT LEARNING OUTCOMES</u>:

By the end of this course, the student will be able to:

<u>C</u>	ourse Student Learning Outcome [SLO]	Program Student Learning Outcome [PSLO]	<u>GER</u> [If Applicable]	<u>ISLO & SUBSETS</u>	
1.	Perform multistep calculations with the aid of a calculator.			3-Foundational Skills	QTR
2.	Use Dimensional Analysis to perform basic conversions for units of measurement within and between the English and Metric systems.			3-Foundational Skills	QTR
3.	Graph linear equations.			3-Foundational Skills	QTR
4.	Solve multi-step equations, manipulate formulas and solve a system of linear equations.			3-Foundational Skills	QTR
5.	Organize the solution to a problem and use estimation to determine the reasonableness of the answer.			3-Foundational Skills	QTR
6.	Organize the solution to a problem and use estimation to determine the reasonableness of the answer.			3-Foundational Skills	QTR

J. APPLIED LEARNING COMPONENT: No

K. $\underline{\text{TEXTS}}$:

Carman and Saunders (2014), *Mathematics for the Trades: A Guided Approach (10th Ed.)*. Boston, MA: Pearson Education.

- L. <u>REFERENCES</u>: N/A
- M. EQUIPMENT: None
- N. **GRADING METHOD:** A F

O. <u>SUGGESTED MEASUREMENT CRITERIA/METHODS</u>:

- Homework
- Ouizzes
- Exams
- Participation
- Projects

P. DETAILED COURSE OUTLINE:

- I. Ratio, Proportion, and Percent
 - A. Review of ratio and proportion
 - B. Review of percent
 - C. Applications of percent calculations
 - D. Applications of ratio and proportion
- II. Measurement
 - A. Working with measurement numbers
 - B. English units and unit conversion
 - C. Metric units
 - D. English-Metric conversions and Metric-English conversions
 - E. Technical applications with measurement

III. Pre-Algebra Topics

- A. Exponents and square roots
- B. Order of operations with exponents
- C. Scientific notation and powers of 10
- D. Technical applications using exponents and scientific notation

IV. Basic Algebra

- A. Algebraic language and formulas
- B. Algebraic expressions
- C. Evaluating formulas
- D. Evaluate literal expressions
- E. Solve simple equations
- F. Graph linear equations

V. Review of Fundamental Algebraic Concepts

- A. Algebraic language and formulas
- B. Evaluating algebraic expressions and formulas
- C. Combining like terms
- D. Solve simple equations involving one variable
- E. Solve equations involving two operations
- F. Solving equations with variables on two sides
- G. Manipulating formulas
- H. Multiplying and dividing simple factors
- I. Applications

VI. Practical Plane Geometry

- A. Labeling, measuring, classifying, and drawing angles
- B. Area and perimeter of polygons
- C. Pythagorean theorem
- D. Circumference and area of circles
- E. Applications

VII. Solid Figures – Volume and Surface Area

- A. Prisms
- B. Pyramids and frustums of pyramids
- C. Cylinders and spheres
- D. Cones and frustums of cones
- E. Applications

VIII. Trigonometry

- A. Angles and triangles
- B. Trigonometric ratios
- C. Solving right triangles
- D. Applications

IX. Algebra

- A. Systems of equations
- B. Solving systems of equations by graphing
- C. Solving systems of equations by substitution
- D. Solving systems of equations by elimination
- E. Applications

Q. <u>LABORATORY OUTLINE</u>: None