STATE UNIVERSITY OF NEW YORK COLLEGE OF TECHNOLOGY CANTON, NEW YORK

MASTER SYLLABUS

MATH 111 – SURVEY OF MATHEMATICS

Created by: Alice K. Reed

Updated by: Claire Medve

CANINO SCHOOL OF ENGINEERING TECHNOLOGY MATHEMATICS DEPARTMENT Spring 2018 A. <u>TITLE</u>: Survey of Mathematics

B. <u>COURSE NUMBER</u>: MATH 111

C. <u>CREDIT HOURS</u>: (Hours of Lecture, Laboratory, Recitation, Tutorial, Activity)

Credit Hours: 3
Lecture Hours: 3 per week
Lab Hours: 0 per week
Other: 0 per week

Course Length: 15 Weeks

D. WRITING INTENSIVE COURSE: Yes No 🛛

E. <u>GER CATEGORY</u>: None: Yes: GER 1 Mathematics *If course satisfies more than one*:

F. <u>SEMESTER(S) OFFERED</u>: Fall Spring Fall & Spring K

G. <u>COURSE DESCRIPTION</u>:

A study of various mathematical topics including an introduction to quantitative reasoning skills, truth table logic, sets, probability, and geometry. This course is designed for non-technical oriented students. It is appropriate for students in liberal arts.

H. <u>PRE-REQUISITES</u>: None Yes X If yes, list below:

Intermediate Algebra (MATH 106) with a grade of C or better, or 2 NYS high school regents math courses with a grade of 75 or above on the second New York State Regents mathematics examinations, or permission of instructor.

<u>CO-REQUISITES</u>: None Yes If yes, list below:

I. <u>STUDENT LEARNING OUTCOMES</u>: (see key below)

By the end of this course, the student will be able to:

<u>Course Student Learning Outcome</u> [SLO]	<u>Program Student</u> <u>Learning</u> <u>Outcome</u> [PSLO]	<u>GER</u> [If Applicable]	<u>ISLO & SUBSETS</u>
Use inductive and deductive reasoning to predict patterns or sequences and prove conjectures.		1	3 Foundational Skills QTR
Solve real life applications using set operations and Venn diagrams.		1	3 Foundational Skills QTR
Determine the validity of symbolic and syllogistic arguments.		1	3 Foundational Skills QTR
Find expected value in real life applications.		1	3 Foundational Skills QTR
Use permutations, combinations, and compound, conditional, and binomial probabilities to solve real life applications.		1	3 Foundational Skills QTR
Find angle measurement to solve real life applications.		1	3 Foundational Skills QTR
Solve applications using area, volume, and the Pythagorean Theorem.		1	3 Foundational Skills QTR
Construct and analyze transformations of objects in two dimensional space.		1	3 Foundational Skills QTR
Use basic graph theory to determine if a network is traversable.		1	3 Foundational Skills QTR

KEY	Institutional Student Learning Outcomes [ISLO 1 – 5]		
ISLO #	ISLO & Subsets		
1	Communication Skills Oral [O], Written [W]		
2	Critical Thinking Critical Analysis [CA], Inquiry & Analysis [IA], Problem Solving [PS]		
3	Foundational Skills Information Management [IM], Quantitative Lit,/Reasoning [QTR]		
4	Social Responsibility Ethical Reasoning [ER], Global Learning [GL], Intercultural Knowledge [IK], Teamwork [T]		
5	Industry, Professional, Discipline Specific Knowledge and Skills		

*Include program objectives if applicable. Please consult with Program Coordinator

J. <u>APPLIED LEARNING COMPONENT:</u>

Yes 🗌 No 🖂

If YES, select one or more of the following categories:

- Classroom/Lab
 Internship
 Clinical Placement
 Practicum
 Service Learning
 - Community Service

 Civic Engagement
 Creative Works/Senior Project
 Research
 Entrepreneurship (program, class, project)

K. <u>TEXTS</u>:

Currently using: *A Survey of Mathematics with Applications* by Angel, Abbott, and Runde, 9th edition (2013), Pearson.

L. <u>REFERENCES</u>: None

M. <u>EQUIPMENT</u>: None Needed:

Smart classroom (computer projection and access to the internet). A scientific calculator is required for this course.

N. <u>GRADING METHOD</u>: A – F

O. <u>SUGGESTED MEASUREMENT CRITERIA/METHODS</u>:

- Homework
- Quizzes
- Exams

P. <u>DETAILED COURSE OUTLINE</u>:

I. Quantitative Reasoning Skills

- 1. Inductive Reasoning
- 2. Deductive Reasoning
- 3. Estimation

II. Elementary Set Operations

- 1. Set Notation
- 2. Finite and Infinite Sets
- 3. Equal and Equivalent Sets
- 4. Cardinality
- 5. Empty and Universal Set
- 6. Subsets and Proper subsets
- 7. Complements, Intersection, and Union of Sets
- 8. Venn Diagrams

III. Elementary Truth Table Logic

- 1. Symbolic Form
- 2. Statements and Logical Connectives
- 3. Quantifiers
- 4. Constructing Negation, Conjunction, Disjunction, Conditional and Biconditional Truth Tables
- 5. Tautologies
- 6. Logically equivalent statements
- 7. Converse, Inverse, and Contrapositive
- 8. Symbolic arguments using Laws of Inference and Proof
- 9. Syllogistic arguments using Euler Diagrams

IV. Basic Counting and Probability

- 1. Empirical and Theoretical Probability
- 1. Odds and Probability
- 3. Expected Value (Expectation)
- 4. Tree Diagrams
- 5. Basic Counting Principle
- 6. Compound Probability (And/Or) With and without replacement
- 7. Mutually exclusive, Independent and Dependent Events
- 8. Conditional Probability
- 9. ! Permutations
- 10. Combinations
- 11. Binomial Probability

V. Geometry

- 1. Points, Lines, Planes, and Angles
- 2. Polygons
- 3. ! Perimeter and Area
- 4. ! Volume and Surface Area
- 5. Transformational Geometry, Symmetry, and Tessellations
- 6. Mobius Strip
- 7. ! Jordan Curve
- 8. Topological Equivalence
- 9. Graphs, Paths, and Circuits

Q. <u>LABORATORY OUTLINE</u>: None X Yes