STATE UNIVERSITY OF NEW YORK COLLEGE OF TECHNOLOGY CANTON, NEW YORK

MASTER SYLLABUS

COURSE NUMBER - COURSE NAME MATH 116 - Mathematics for Elementary Teachers II

Created by: Alice Reed
Updated by: Alice Reed

Canino School of Engineering Technology
Department: Mathematics
Semester/Year: Spring/2019
A. TITLE: Mathematics for Elementary Teachers II
B. COURSE NUMBER: Math 116
C. CREDIT HOURS: (Hours of Lecture, Laboratory, Recitation, Tutorial, Activity)
\# Credit Hours: 3
\# Lecture Hours: 3 per week
\# Lab Hours: per week
Other: per week
Course Length: 15 Weeks
D. WRITING INTENSIVE COURSE: Yes \square No \boxtimes
E. GER CATEGORY: None: \square Yes: GER 1 Mathematics

If course satisfies more than one: GER
F. \quad SEMESTER(S) OFFERED: Fall \boxtimes Spring \square Fall \& Spring \square

G. COURSE DESCRIPTION:

The study of the development, meaning, and representations of statistics, patterns and functions, concepts of geometry, and measurement of two- and three-dimensional figures. The focus of the course will be on the construction of mathematical representations for $\mathrm{K}-8$ topics via problem solving. The majority of the course will be activity-based (exploration of topics through problem solving activities.)

H. PRE-REQUISITES: None \square Yes \boxtimes If yes, list below:

Mathematics for Elementary Teachers I (Math 115) with a grade of C or better, or permission of instructor.

CO-REQUISITES: None \boxtimes Yes \square If yes, list below:

I. STUDENT LEARNING OUTCOMES: (see key below)

By the end of this course, the student will be able to:

$\frac{\text { Course Student Learning Outcome }}{[\text { SLO }}$	$\frac{\text { Program Student }}{\frac{\text { Learning }}{\text { Outcome }}}$ LPSLOI	$\frac{G E R}{\text { Applicable] }}$	ISLO \& SUBSETS	
Collect, display, and analyze data to interpret and draw inferences from graphs		1	$\begin{aligned} & \text { 3-Found Skills } \\ & \text { ISLO } \\ & \text { ISLO } \end{aligned}$	QTR Subsets Subsets Subsets
Determine the probability of an event occurring		1	$\begin{aligned} & \text { 3-Found Skills } \\ & \text { ISLO } \\ & \text { ISLO } \end{aligned}$	
Use manipulatives to recognize, construct, classify, and understand relationships between basic geometric figures		1	$\begin{aligned} & \text { 3-Found Skills } \\ & \text { ISLO } \\ & \text { ISLO } \end{aligned}$	QTR Subsets Subsets Subsets
Use manipulatives to determine angle measurement, congruence, and identify properties of two and three dimensional figures		1	$\begin{aligned} & \text { 3-Found Skills } \\ & \text { ISLO } \\ & \text { ISLO } \end{aligned}$	QTR Subsets Subsets Subsets
Transform figures to create and understand tessellations and symmetry		1	$\begin{aligned} & \text { 3-Found Skills } \\ & \text { ISLO } \\ & \text { ISLO } \end{aligned}$	QTR Subsets Subsets Subsets
			$\begin{aligned} & \hline \text { ISLO } \\ & \text { ISLO } \\ & \text { ISLO } \end{aligned}$	
			$\begin{aligned} & \hline \text { ISLO } \\ & \text { ISLO } \\ & \text { ISLO } \end{aligned}$	
			$\begin{aligned} & \hline \text { ISLO } \\ & \text { ISLO } \\ & \text { ISLO } \end{aligned}$	
			$\begin{aligned} & \hline \text { ISLO } \\ & \text { ISLO } \\ & \text { ISLO } \end{aligned}$	Subsets Subsets Subsets Subsets

			ISLO ISLO ISLO	Subsets Subsets Subsets Subsets

KEY	Institutional Student Learning Outcomes [ISLO 1 - 5]
ISLO $\#$	ISLO \& Subsets
$\mathbf{1}$	Communication Skills Oral [O], Written [W]
$\mathbf{2}$	Critical Thinking Critical Analysis [CA] , Inquiry \& Analysis [IA] , Problem Solving [PS]
$\mathbf{3}$	Foundational Skills Information Management [IM], Quantitative Lit,/Reasoning [QTR]
$\mathbf{4}$	Social Responsibility Ethical Reasoning [ER], Global Learning [GL], Intercultural Knowledge [IK], Teamwork [T]
$\mathbf{5}$	Industry, Professional, Discipline Specific Knowledge and Skills

*Include program objectives if applicable. Please consult with Program Coordinator
J. APPLIED LEARNING COMPONENT: \quad Yes \square No \boxtimes

If YES, select one or more of the following categories:

\square	Classroom/Lab
\square	Internship
\square	Clinical Placement
\square	Practicum
\square	Service Learning
\square	Community Service

Civic Engagement
Creative Works/Senior Project
Research
Entrepreneurship
(program, class, project)

K. TEXTS:

Bassarear, T. (2016). Mathematics for Elementary School Teachers (6th ed.) Boston: HoughtonMifflin Company.
Bassarear, T. (2016). Mathematics for Elementary School Teachers Explorations (6th ed.) Boston: Houghton-Mifflin Company.
L. REFERENCES:
M. EQUIPMENT: None \boxtimes Needed:
N. GRADING METHOD: A-F

O. SUGGESTED MEASUREMENT CRITERIA/METHODS:

in-class activities/lab work
oral reports
weekly journals about mathematical concepts encountered outside of the classroom concept maps on the main topics
mini-projects (based on evaluations of K-8 textbooks problems, videos of elementary
classroom discussions and elementary student work samples)
portfolio
hourly exams

P. DETAILED COURSE OUTLINE:

I. Probability and Statistics

1. Data interpretation and chance in society
2. Collecting and analyzing data
3. Measures of Central Tendency
4. Interpretation of mean
5. Dispersion, variation, and distributions
6. Interpreting graphs
7. Comparing two sets of data
8. Normal distributions
9. Different distributions
10. Scatter plots
11. Inferential statistics
12. Probabilities
13. Fair games
14. Expected value

II. Patterns and Functions

1. Functional relationships from tables, graphs, and symbols
2. Output values when given input values
3. Rules for determining a function from a table or a graph
4. Domain and the range of a function
5. Properties to solve equations for a variable
6. Rate of change of a function from a table, graph, or an equation

III. Concepts of Geometry

1. Definitions of terms with necessary and sufficient conditions
2. Geometric figures and shapes
3. Constructing basic geometric shapes
4. Classifying polygons according to their properties
5. Determining whether three given segment lengths could be used to form a triangle
6. Determining when two figures are congruent
7. Determining when two figures are similar
8. Properties of figures to find angle measures and/or side lengths
9. Determining the measure of the angles in a polygon
10. Determining the measure of an angle in a regular polygon
IV. Measurement
11. Finding the length, area, perimeter/circumference, surface area, volume of various figures
12. Generating rectangles to meet specific criteria
13. Finding the length of a side in a right triangle when given the other two sides
14. Proving the Pythagorean relationship
15. Identifying various parts of two- and three-dimensional figures
16. Drawing rectangular prisms from different views
17. Translations, rotations, reflections of figures
18. Making tessellations
19. Identifying vertex arrangements for tessellations
Q. LABORATORY OUTLINE: None \boxtimes Yes \square
