STATE UNIVERSITY OF NEW YORK COLLEGE OF TECHNOLOGY CANTON, NEW YORK

MASTER SYLLABUS

COURSE NUMBER – COURSE NAME MATH 151 – Business Calculus

Created by: Alice Reed

Updated by: Alice Reed

CANINO SCHOOL OF ENGINEERING TECHNOLOGY MATHEMATICS DEPARTMENT Semester/Year: March 2019 A. TITLE: Business Calculus

B.! **COURSE NUMBER:** MATH 151

C. ! CREDIT HOURS: (Hours of Lecture, Laboratory, Recitation, Tutorial, Activity)

Credit Hours: 4
Lecture Hours: 4 per week
Lab Hours: 0 per week
Other: 0 per week

Course Length: 15 Weeks

D. <u>WRITING INTENSIVE COURSE</u>: Yes \square No \boxtimes

E. <u>GER CATEGORY</u>: None: Yes: GER 1 Mathematics *If course satisfies more than one*: GER

F. <u>SEMESTER(S) OFFERED</u>: Fall Spring Fall & Spring K

G. <u>**COURSE DESCRIPTION:**</u> This course is an intuitive introduction to the Calculus. Topics include: Review of functions, analytical geometry of the line, properties of limits; the derivative with applications; transcendental functions; and integrals with applications. Selected additional topics will be offered, as time permits, at the discretion of the instructor.

H. ! <u>PRE-REQUISITES</u>: None Yes If yes, list below:

College Algebra (MATH 121) (or Precalculus MATH 123) with a grade of C or better, or 3 years of high school mathematics with a grade of 75 or above on the third New York State Regents mathematics examination, or permission of instructor.

<u>CO-REQUISITES</u>: None Yes If yes, list below:

I. <u>STUDENT LEARNING OUTCOMES</u>: (see key below)

By the end of this course, the student will be able to:

<u>Course Student Learning Outcome</u> [SLO]	<u>Program Student</u> <u>Learning</u> <u>Outcome</u> [PSLO]	<u>GER</u> [If Applicable]	<u>ISLO & SUBSETS</u>	
Intuit the limit of a function from a sketch, compute the limit at a point and at infinity, and determine where it is continuous		1	3 - Foundational Skills QTR	
Compute derivatives of functions using sum, difference, product, quotient and chain rules, and use implicit differentiation for relations		1	3 - Foundational Skills QTR	
Use derivatives to investigate the properties of functions and sketch the graph		1	3 - Foundational Skills QTR	
Use derivatives to solve optimization problems		1	3 - Foundational Skills QTR	
Use implicit differentiation to solve related rates problems		1	3 - Foundational Skills QTR	
Use derivatives to solve exponential growth and decay problems		1	3 - Foundational Skills QTR	
Compute anti-derivatives and use the Fundamental Theorem of Calculus to compute the area under a curve		1	3 - Foundational Skills QTR	

KEY	Institutional Student Learning Outcomes [ISLO 1 – 5]		
ISLO	ISLO & Subsets		
#			
1	Communication Skills		
	Oral [O], Written [W]		
2	Critical Thinking		
	Critical Analysis [CA], Inquiry & Analysis [IA], Problem		
	Solving [PS]		
3	Foundational Skills		
	Information Management [IM], Quantitative Lit,/Reasoning		
	[QTR]		
4	Social Responsibility		
	Ethical Reasoning [ER], Global Learning [GL],		
	Intercultural Knowledge [IK], Teamwork [T]		
5	Industry, Professional, Discipline Specific Knowledge and		
	Skills		

*Include program objectives if applicable. Please consult with Program Coordinator

J. <u>APPLIED LEARNING COMPONENT:</u>

Yes 🗌 No 🖂

If YES, select one or more of the following categories:

Classroom/LabCivic EngagementInternshipCreative Works/Senior ProjectClinical PlacementResearchPracticumEntrepreneurshipService Learning(program, class, project)Community ServiceCommunity Service

K. <u>TEXTS</u>:

Brief Calculus: An Applied Approach (9th edition) by Larson, Houghton Mifflin Company 2011

L. <u>REFERENCES</u>:

M. <u>EQUIPMENT</u>: None Needed: Technology enhanced classroom

N. <u>GRADING METHOD</u>: A - F

0. <u>SUGGESTED MEASUREMENT CRITERIA/METHODS</u>:

Homework ! Quizzes ! Exams ! Projects !

P. <u>DETAILED COURSE OUTLINE</u>:

- I. Functions, Graphs, and Limits
 - A. The Cartesian Plane and Distance Formula
 - B. Graphs of equations
 - C. Lines in the plane and slope
 - D. Functions
 - 1. Notation
 - 2. Evaluation
 - 3. Domain, range, zeros
 - 4. Linear functions
 - 5. Graphs
 - 6. Economic functions
 - E. Limits
 - 1. Estimate limits using tables and graphs
 - 2. Find limits using algebra
 - 3. Determine when limits exist and when they do not exist.
 - F. Continuity
 - 1. Definition of continuity
 - 2. Removable and non-removable discontinuity
- II. Differentiation

- A. The derivative and the slope of a graph
- B. Basic rules for differentiation
 - 1. Constant rule
 - 2. Power rule
 - 3. Sum and difference rules
- C. Rates of change
 - 1. Velocity
 - 2. Marginal cost, revenue, and profit
- D. The product and quotient rules
- E. The chain rule
- F. Higher-order derivatives 1. Acceleration
- G. Implicit differentiation
- H. Related rates
- III. Applications of the Derivative
 - A. Increasing and decreasing functions
 - B. Extrema and the First-Derivative test
 - 1. Critical points
 - C. Concavity and the Second-Derivative test
 - 1. Inflection points
 - D. Asymptotes
 - 1. Limits involving infinity
 - E. Curve-sketching
 - F. Optimization Problems
 - 1. Maximum and minimum applications
 - 2. Area
 - 3. Business and economic problems
 - G. Differentials and marginal analysis
- IV. Integration
 - A. Exponential and logarithmic functions
 - 1. Review of natural exponential and logarithmic properties
 - 2. Derivatives of exponential and logarithmic functions
 - 3. Exponential growth and decay
 - B. Antiderivatives and indefinite integrals
 - C. The general power rule
 - D. Integration by substitution
 - E. Exponential and logarithmic integrals
 - F. Evaluate definite integrals
 - G. Area under a curve
 - H. The Fundamental Theorem of Calculus
 - I. The area of a region bounded by two graphs
 - J. Approximate area
 - 1. Midpoint rule
 - 2. Trapezoidal rule

Q. <u>LABORATORY OUTLINE</u>: None X Yes