STATE UNIVERSITY OF NEW YORK COLLEGE OF TECHNOLOGY CANTON, NEW YORK

MASTER SYLLABUS

COURSE NUMBER – COURSE NAME MATH 162 - CALCULUS II

Created by: Jiayuan Lin

Updated by: Jiayuan Lin

Canino School of Engineering Technology

Department: MATHEMATICS DEPARTMENT

Semester/Year: Fall/2018

A. <u>TITLE</u>: CALCULUS II

B. <u>COURSE NUMBER</u>: MATH 162

C. <u>CREDIT HOURS</u>: (Hours of Lecture, Laboratory, Recitation, Tutorial, Activity)

Credit Hours: 4
Lecture Hours: 4 per week
Lab Hours: 0 per week
Other: per week

Course Length: 15 Weeks

D. WRITING INTENSIVE COURSE: Yes No 🛛

E. <u>GER CATEGORY</u>: None: Yes: GER *If course satisfies more than one*: GER

F. <u>SEMESTER(S) OFFERED</u>: Fall Spring Fall & Spring

G. <u>COURSE DESCRIPTION</u>:

This course is the second of a three-semester sequence in Calculus. Topics include: differentials, definite integrals and their applications; integration of exponential, logarithmic, trigonometric and inverse trigonometric functions; techniques of integration; series; parametric equations and polar coordinates. Four hours of lecture per week.

H. <u>PRE-REQUISITES</u>: None Yes X If yes, list below:

Calculus I (MATH 161) with a grade of C or better or permission of instructor.

<u>CO-REQUISITES</u>: None Yes If yes, list below:

I. <u>STUDENT LEARNING OUTCOMES</u>: (see key below)

By the end of this course, the student will be able to:

Course Student Learning Outcome	Program Student		ISLO & SUBSETS	5
<u> SLO </u>	<u>Learning</u> <u>Outcome</u> [PSLO]	<u>GER</u> [If Applicable]		
Apply results from Calculus I to differentiate and integrate functions and relations and use the integration technique of u-substitution	<u>[2222]</u>	GER 1	3-Found Skills ISLO ISLO	QTR Subsets Subsets Subsets
Use the definite integral to compute area, volume, arc length, and work done by a variable force		GER 1	3-Found Skills ISLO ISLO	QTR Subsets Subsets Subsets
Solve problems involving exponential and logarithm functions and compute derivatives and integrals of these functions		GER 1	3-Found Skills ISLO ISLO	QTR Subsets Subsets Subsets
Use substitution, integration by parts, trigonometric substitutions, and partial fractions to compute integrals		GER 1	3-Found Skills ISLO ISLO	QTR Subsets Subsets Subsets
Use L'Hopitals rule to compute limits of indeterminate forms at infinity and zero, and find the limit of a sequence		GER 1	3-Found Skills ISLO ISLO	QTR Subsets Subsets Subsets
Produce Taylor series and Maclauren series for a variety of common functions		GER 1	3-Found Skills ISLO ISLO	QTR Subsets Subsets Subsets
			ISLO ISLO ISLO	Subsets Subsets Subsets Subsets

KEY	Institutional Student Learning Outcomes [ISLO 1 – 5]		
ISLO	ISLO & Subsets		
#			
1	Communication Skills		
	Oral [O], Written [W]		
2	Critical Thinking		
	Critical Analysis [CA], Inquiry & Analysis [IA], Problem		
	Solving [PS]		
3	Foundational Skills		
	Information Management [IM], Quantitative Lit,/Reasoning		
	[QTR]		
4	Social Responsibility		
	Ethical Reasoning [ER], Global Learning [GL],		
	Intercultural Knowledge [IK], Teamwork [T]		
5	Industry, Professional, Discipline Specific Knowledge and		
	Skills		

*Include program objectives if applicable. Please consult with Program Coordinator

J. <u>APPLIED LEARNING COMPONENT:</u>

Yes 🗌 No 🖂

If YES, select one or more of the following categories:

Classroom/LabCivic EngagementInternshipCreative Works/Senior ProjectClinical PlacementResearchPracticumEntrepreneurshipService Learning(program, class, project)Community ServiceCommunity Service

K. <u>TEXTS</u>:

Calculus, the Classic Edition, 5th Edition; by Swokowski; Brooks/Cole Cengage Learning

L. <u>REFERENCES</u>:

Many materials in the Math Lab and online will aid the students with mastery of this subject

M. <u>EQUIPMENT</u>: None Needed:

N. **<u>GRADING METHOD</u>**: A-F

O. <u>SUGGESTED MEASUREMENT CRITERIA/METHODS</u>:

- Homework
- Quizzes
- Exams
- Projects

P. <u>DETAILED COURSE OUTLINE</u>:

- I. Applications of Integration
- A. Area between two curves
- **B.** Volumes of Revolution
- 1. Disk Method
- 2. Washer Method
- 3. Shell Method
- C. The length of an Arc
- D. Surface Area (Optional)
- E. Work (Liquid Pressure and Moments Optional)
- II. Transcendental Functions
- A. Techniques for Integration of Products Powers of Trigonometric Functions
- B. Differentiation and Integration of Logarithmic and Exponential Functions
- C. Logarithmic Differentiation
- D. Differentiation and Integration of Inverse Trigonometric Functions

- III. Integration Techniques, L'Hopital's Rule, and Improper Integrals
- A. Integration by Substitution
- **B.** Integration by Parts
- C. Trigonometric Integrals
- D. Trigonometric Substitution
- E. Partial Fractions
- F. Limits of Indeterminate Form and L'Hopital's Rule
- G. Improper Integrals
- IV. Infinite Series
- A. Sequences, monotonic sequences and bounded sequences
- **B.** Geometric Series
- C. Tests for Convergence and Divergence for Series of Constant terms (optional)
- D. Power series
- E. Taylor series and Maclaurin series of common functions
- Q. <u>LABORATORY OUTLINE</u>: None X Yes