STATE UNIVERSITY OF NEW YORK COLLEGE OF TECHNOLOGY CANTON, NEW YORK

MASTER SYLLABUS

COURSE NUMBER – COURSE NAME MATH263 – Calculus III

Created by: Math Department

Updated by: Daniel Gagliardi

Canino School of Engineering Technology

Department: Mathematics

Semester/Year: Fall 2018

A. <u>TITLE</u>: Calculus III

B. <u>COURSE NUMBER</u>: MATH263

C. <u>CREDIT HOURS</u>: (Hours of Lecture, Laboratory, Recitation, Tutorial, Activity)

Credit Hours: 4
Lecture Hours: 4 per week
Lab Hours: per week
Other: per week

Course Length: 15 Weeks

D. <u>WRITING INTENSIVE COURSE</u>: Yes No 🛛

E. <u>GER CATEGORY</u>: None: Yes: GER 1 Mathematics *If course satisfies more than one*: GER

F. <u>SEMESTER(S) OFFERED</u>: Fall Spring Fall & Spring

G. <u>COURSE DESCRIPTION</u>:

This course is the third of a three-semester sequence of calculus courses. Included are topics from analytic geometry, plane curves and polar coordinates, vectors, vector valued functions and topics from differential geometry, partial differentiation, multiple integrals, along with selected topics from vector calculus.

H. <u>PRE-REQUISITES</u>: None Yes X If yes, list below:

Calculus II (MATH 162) with a grade of C or better or permission of instructor.

<u>CO-REQUISITES</u>: None Yes If yes, list below:

I. <u>STUDENT LEARNING OUTCOMES</u>: (see key below)

By the end of this course, the student will be able to:

Course Student Learning Outcome	Program Student Learning	GER	<u>ISLO & SUBSETS</u>	
<u>[SLO]</u>	<u>Outcome</u>	[If Applicable]		
	<u>[PSLO]</u>			
Use vector operations to solve problems		GER 1	3-Found Skills	QTR
involving areas, volumes and distance in				
two and three Euclidean space.				
Use vector operations to develop equations		GER 1	3-Found Skills	QTR
of lines and planes in three space.				
c. Use derivatives and integrals of vector		GER 1	3-Found Skills	OTR
valued functions to compute the length.		OLICI	5 Tould Skills	QII
velocity, acceleration, and curvature of				
vector valued functions				
d. Use partial and directional derivatives to		GER 1	3-Found Skills	QTR
analyze critical points and find absolute				
maximums and minimums of multivariable				
functions over compact sets				
. Compute multiple integrals by changing		GER 1	3-Found Skills	QTR
the order of integration and by transforming				
from rectangular coordinates to polar,				
cylindrical and spherical coordinates				

KEY	Institutional Student Learning Outcomes [ISLO 1 – 5]		
ISLO	ISLO & Subsets		
#			
1	Communication Skills		
	Oral [O], Written [W]		
2	Critical Thinking		
	Critical Analysis [CA], Inquiry & Analysis [IA], Problem		
	Solving [PS]		
3	Foundational Skills		
	Information Management [IM], Quantitative Lit,/Reasoning		
	[QTR]		
4	Social Responsibility		
	Ethical Reasoning [ER], Global Learning [GL],		
	Intercultural Knowledge [IK], Teamwork [T]		
5	Industry, Professional, Discipline Specific Knowledge and		
	Skills		

*Include program objectives if applicable. Please consult with Program Coordinator

J. <u>APPLIED LEARNING COMPONENT:</u>

Yes 🗌 No 🗌

If YES, select one or more of the following categories:

Classroom/LabCivic EngagementInternshipCreative Works/Senior ProjectClinical PlacementResearchPracticumEntrepreneurshipService Learning(program, class, project)Community ServiceCommunity Service

K. <u>TEXTS</u>:

Calculus, the Classic Edition, Earl Swokowski, Brooks/Cole Cengage Learning (1991). ISBN-13: 978-0-534-43538-7

L. <u>REFERENCES</u>:

None

M. <u>EQUIPMENT</u>: None Needed:

N. **<u>GRADING METHOD</u>**: A-F

O. <u>SUGGESTED MEASUREMENT CRITERIA/METHODS</u>:

- Quizzes
- Exams
- Projects
- Homework
- Participation

P. <u>DETAILED COURSE OUTLINE</u>:

- I. Conics, Parametric Equations, and Polar Coordinates
- A. Parabolas
- B. Ellipses
- C. Hyperbolas
- D. Graphs of parametric equations
- E. Parametric equations and calculus
- F. Polar graphs and polar-rectangular conversions
- G. Calculus with Polar Coordinates
- H. Area of Polar Regions
- II. Vectors
- A. Vectors in the plane
- **B.** Vectors in space
- C. Dot product

- **D.** Cross product
- E. Lines and Planes in three dimensional Euclidean Space
- F. Quadric Surfaces
- III. Vector-Valued Functions and Elementary Differential Geometry
- A. Vector-valued functions
- B. Differentiation and integration of vector-valued functions
- C. Velocity and Acceleration
- D. Tangent vectors and normal vectors
- E. Arc length, curvature and torsion
- **IV.** Functions of Several Variables
- A. Limits and continuity
- **B.** Partial derivatives
- C. Differentials
- D. Chain rules for functions of several variables
- E. Directional derivatives and gradients
- F. Tangent planes and normal lines
- G. Extrema of functions of two variables with applications
- H. Lagrange Multipliers (Optional)
- V. Multiple Integration
- A. Iterated integrals
- **B.** Double integrals and volume
- C. Double integrals in polar coordinates
- D. Center of mass and moments of inertia
- E. Surface area
- F. Triple integrals and applications
- G. Triple integrals in cylindrical and spherical coordinates
- H. The Jacobian and change of variables for double integrals (optional)
- VI. Vector Analysis (OPTIONAL)
- A. Vector fields
- **B.** Divergence and curl
- C. Line integrals
- D. Green's theorem

Q. <u>LABORATORY OUTLINE</u>: None X Yes