STATE UNIVERSITY OF NEW YORK COLLEGE OF TECHNOLOGY CANTON, NEW YORK

MASTER SYLLABUS

MATH 341 – Statistics II

Created by: Patrick Casselman Updated by: Patrick Casselman

> CANINO SCHOOL OF ENGINEERING TECHNOLOGY MATHEMATICS DEPARTMENT Fall 2018

A. <u>TITLE</u>: STATISTICS II

B. % COURSE NUMBER: MATH 341

C. % <u>CREDIT HOURS</u>: (Hours of Lecture, Laboratory, Recitation, Tutorial, Activity)

Credit Hours: 3 ! # Lecture Hours: 3 per week # Lab Hours: per week Other: per week

Course Length: 15 Weeks

D. <u>WRITING INTENSIVE COURSE</u>: N/A

- E. <u>GER CATEGORY</u>: 1
- F. <u>SEMESTER(S) OFFERED</u>: Spring and Fall

G. <u>COURSE DESCRIPTION</u>:

Includes confidence intervals and hypothesis testing for population proportions, variance and standard deviation; hypothesis testing two samples for differences between means; correlation and regression, including multiple regression; finding prediction intervals and hypothesis tests for the linear correlation coefficient; Chi-square tests and the Fdistribution; non-parametric tests.

H. % PRE-REQUISITES/CO-REQUISITES:

a. Pre-requisite(s): Statistics (MATH 141) with a grade of C or better or permission of instructor.

b. Co-requisite(s): N/A

c. Pre- or co-requisite(s): N/A

I. % <u>STUDENT LEARNING OUTCOMES</u>:

Course Student Learning Outcome [SLO]	<u>PSLO</u>	<u>GER</u>	<u>ISLO</u>
a. Construct confidence intervals for the population mean, proportion, variance, and standard deviation.		1	3. Quantitative Lit,/Reasoning [QTR]
b. Test hypotheses for the population mean, proportion, variance, and standard deviation of one sample.		1	3. Quantitative Lit,/Reasoning [QTR]
c. Test hypotheses for the population mean, proportion, variance, and standard deviation of two samples.		1	3. Quantitative Lit,/Reasoning [QTR]
d. Analyze datasets using regression and multiple regression.		1	3. Quantitative Lit,/Reasoning [QTR]

e. Analyze datasets using the chi- square distribution, the F- distribution, and ANOVA.	1		3. Quantitative Lit,/Reasoning [QTR]
---	---	--	---

KEY	Institutional Student Learning Outcomes [ISLO
	<u>1-5]</u>
ISLO	ISLO & Subsets
#	
1	Communication Skills
	Oral [O], Written [W]
2	Critical Thinking
	Critical Analysis [CA], Inquiry & Analysis [IA],
	Problem Solving [PS]
3	Foundational Skills
	Information Management [IM], Quantitative
	Lit,/Reasoning [QTR]
4	Social Responsibility
	Ethical Reasoning [ER], Global Learning [GL],
	Intercultural Knowledge [IK], Teamwork [T]
5	Industry, Professional, Discipline Specific
	Knowledge and Skills

J. <u>APPLIED LEARNING COMPONENT:</u>

Yes_____ No___x

- K. % <u>TEXTS:</u> Elementary Statistics: Picturing the World, 4th Ed., R. Larson and B. Farber, Prentice Hall, 2009, ISBN 13: 9780132424339 or similar.
- L. % <u>REFERENCES</u>: N/A
- M. % EQUIPMENT: N/A

N. % GRADING METHOD: A-F

O. % <u>SUGGESTED MEASUREMENT CRITERIA/METHODS</u>: Methods include:

- Exams
 - Homework/Quizzes
 - Projects

P. <u>DETAILED COURSE OUTLINE</u>:

- I. Confidence Intervals
 - A. Confidence intervals for population proportions
 - B. Confidence intervals for variance and standard deviation
- II. Hypothesis Testing One Sample
 - A. Hypothesis testing for proportions

B. Hypothesis testing for variance and standard deviation !

- III. Hypothesis Testing Two samples
 - A. Testing the difference between means (large independent samples) using a z-test
 - B. Testing the difference between means (small independent samples) using a *t*-test
 - C. Testing the difference between means (dependent samples) using a *t*-test
 - D. Testing the difference between proportions using a z-test
- IV. Correlation and Regression
 - A. Finding the linear correlation coefficient
 - B. Hypothesis testing the population correlation coefficient, ρ
 - C. Multiple regression
 - D. Finding prediction intervals
- V. Chi-square Tests and the F-distribution
 - A. The Chi-square goodness of fit test
 - B. Using Chi-square distribution to test whether two variables are independent
 - C. Using the two-sample F-test for variances
 - D. One-way analysis of variance (ANOVA)
 - E. Two-way analysis of variance (optional)
- VI. Nonparametric Tests
 - A. Using the sign test for a population median
 - B. Using the paired-sample sign test
 - C. Using the Wilcoxon signed-rank and rank-sum tests to determine if two samples are selected from populations having the same distribution.
 - D. Using the Mann-Whitney test to determine if the means of two samples are equal (optional).
 - E. Using the Kruskal-Wallis Test to test whether three or more samples are from populations having the same distribution
 - F. Using the Friedman test for dependent samples (optional).

- G. Using the Spearman rank correlation coefficient to determine if the correlation between two variables is significant.
- H. Using the runs test to test datasets for randomness.

Q. LABORATORY OUTLINE: N/A