STATE UNIVERSITY OF NEW YORK COLLEGE OF TECHNOLOGY CANTON, NEW YORK

MASTER SYLLABUS

COURSE NUMBER - COURSE NAME MATH 351 - DISCRETE MATHEMATICS

Created by: Jiayuan Lin
Updated by: Jiayuan Lin

Canino School of Engineering Technology
Department: MATHEMATICS DEPARTMENT
Semester/Year: Fall/2018

A. TITLE: DISCRETE MATHEMATICS

B. COURSE NUMBER: MATH 351
C. CREDIT HOURS: (Hours of Lecture, Laboratory, Recitation, Tutorial, Activity)
\# Credit Hours: 3
\# Lecture Hours: 3 per week
\# Lab Hours: 0 per week
Other: per week
Course Length: 15 Weeks
D. WRITING INTENSIVE COURSE: Yes \square No \boxtimes
E. GER CATEGORY: None: \square Yes: GER

If course satisfies more than one: GER
F. \quad SEMESTER(S) OFFERED: Fall \square Spring \square Fall \& Spring \boxtimes

G. COURSE DESCRIPTION:

This course studies the basic tools and techniques of discrete mathematics and their applications. The topics include sets, logic, proofs, functions and relations, algorithms, elementary number theory, counting methods, discrete probability, pigeonhole principle, recurrence relations, introduction to graph theory and Boolean algebras. Three hour lecture per week.

H. PRE-REQUISITES: None \square Yes \boxtimes If yes, list below:

College Algebra (MATH 121) or Precalculus Algebra and Trigonometry (MATH 123), with a grade of C or better or permission of instructor.

CO-REQUISITES: None \boxtimes Yes \square If yes, list below:

I. STUDENT LEARNING OUTCOMES: (see key below)

By the end of this course, the student will be able to:

$\frac{\text { Course Student Learning Outcome }}{\underline{S L O}}$	$\frac{\text { Program Student }}{\frac{\text { Learning }}{\text { Outcome }}}$[PSLOI	$\begin{gathered} \frac{G E R}{I I f} \\ \text { Applicable] } \end{gathered}$	ISLO \& SUBSETS	
Use basic logic and set theory for reasoning		GER 1	$\begin{aligned} & \text { 3-Found Skills } \\ & \text { ISLO } \\ & \text { ISLO } \end{aligned}$	QTR Subsets Subsets Subsets
Construct abstract proofs or give counterexamples		GER 1	$\begin{aligned} & \text { 3-Found Skills } \\ & \text { ISLO } \\ & \text { ISLO } \end{aligned}$	QTR Subset Subsets Subsets
Understand the discrete structure in number system and probability		GER 1	3-Found Skills ISLO ISLO	QTR Subsets Subsets Subset
Use counting principles to solve real life problems, analyze algorithms, construct and solve recurrence relations		GER 1	$\begin{aligned} & \text { 3-Found Skills } \\ & \text { ISLO } \\ & \text { ISLO } \end{aligned}$	QTR Subsets Subsets Subset
Understand fundamentals of graph theory		GER 1	3-Found Skills ISLO ISLO	QTR Subsets Subsets Subsets
Use Boolean algebra in combinatorial circuits		GER 1	3-Found Skills ISLO ISLO	$\begin{aligned} & \text { QTR } \\ & \text { Subsets } \\ & \text { Subsets } \\ & \text { Subsets } \end{aligned}$
			$\begin{aligned} & \text { ISLO } \\ & \text { ISLO } \\ & \text { ISLO } \end{aligned}$	Subsets Subsets Subsets Subsets
			$\begin{aligned} & \text { ISLO } \\ & \text { ISLO } \\ & \text { ISLO } \end{aligned}$	$\begin{array}{\|l\|} \hline \text { Subsets } \\ \text { Subsets } \\ \text { Subsets } \\ \text { Subsets } \end{array}$
			$\begin{aligned} & \text { ISLO } \\ & \text { ISLO } \\ & \text { ISLO } \end{aligned}$	Subsets Subsets Subsets Subsets

			ISLO ISLO ISLO	Subsets Subsets Subsets Subsets

KEY	Institutional Student Learning Outcomes [ISLO 1 - 5]
ISLO $\#$	ISLO \& Subsets
$\mathbf{1}$	Communication Skills Oral [O], Written [W]
$\mathbf{2}$	Critical Thinking Critical Analysis [CA] , Inquiry \& Analysis [IA] , Problem Solving [PS]
$\mathbf{3}$	Foundational Skills Information Management [IM], Quantitative Lit,/Reasoning [QTR]
$\mathbf{4}$	Social Responsibility Ethical Reasoning [ER], Global Learning [GL], Intercultural Knowledge [IK], Teamwork [T]
$\mathbf{5}$	Industry, Professional, Discipline Specific Knowledge and Skills

*Include program objectives if applicable. Please consult with Program Coordinator
J. APPLIED LEARNING COMPONENT: \quad Yes \square No \boxtimes

If YES, select one or more of the following categories:
\square Classroom/Lab
\square Internship
\square Clinical Placement
\square Practicum
\square Service Learning
\square Community Service

\square	Civic Engagement
\square	Creative Works/Senior Project
\square	Research
\square	Entrepreneurship
	(program, class, project)

K. TEXTS:

Members of the Mathematics Department who will be teaching the course will select the appropriate text. Audio-visual aids and computer software will be used when appropriate and available.

L. REFERENCES:

Many materials in the Math Lab and online will aid the students with mastery of this subject
M. EQUIPMENT: None \boxtimes Needed:
N. GRADING METHOD: A-F
O. SUGGESTED MEASUREMENT CRITERIA/METHODS:

- Homework
- Quizzes
- Exams
- Projects

P. DETAILED COURSE OUTLINE:

I. Sets and Logic
A. Sets
B. Propositions and Logical Equivalence
C. Arguments and Rules of Inference
D. Quantifiers and Nested Quantifiers
II. Methods of Proof
A. Mathematical Systems, Direct Proofs, and Counterexamples
B. More Proofs (contradiction, cases etc) and Problem-solving
C. Resolution Proofs (optional)
D. Mathematical Induction
E. Strong Form of Mathematical Induction and the Well-Ordering Property
III. Functions, Sequences, and Relations
A. Functions
B. Sequences and Strings
C. Relations and Equivalence Relations
D. Matrices of Relations
E. Relational Databases (optional)
IV. Algorithms
A. Introduction to Algorithms
B. Examples of Algorithms
C. Analysis of Algorithms
D. Recursive Algorithms
V. Introduction to Number Theory
A. Divisors
B. Representations of Integers and Integer Algorithms
C. Euclidean Algorithm
D. RSA Public-Key Cryptosystem
VI. Counting Methods and the Pigeonhole Principle
A. Basic Counting Principles
B. Permutations and Combinations
C. Generalized Permutations and Combinations
D. Algorithms for Generating Permutations and Combinations
E. Discrete Probability Theory
F. Binomial Coefficients and Combinatorial Identities
G. The Pigeonhole Principle
VII. Recurrence Relations
A. Introduction to Recurrence Relations
B. Solving Recurrence Relations
C. Applications to the Analysis of Algorithms
VIII. Graph Theory
A. Introduction to Graph Theory
B. Paths and Cycles
C. Hamiltonian Cycles and the Traveling Salesperson Problem
D. A Shortest-Path Algorithm
E. Representations of Graphs
F. Isomorphism of Graphs
G. Planar Graphs
IX. Boolean Algebras and Combinatorial Circuits
A. Combinatorial Circuits
B. Properties of Combinatorial Circuits
C. Boolean Algebras
D. Boolean Functions and Synthesis of Circuits

E. Applications

Q. LABORATORY OUTLINE: None \boxtimes Yes \square

