# STATE UNIVERSITY OF NEW YORK COLLEGE OF TECHNOLOGY CANTON, NEW YORK 



## MASTER SYLLABUS

COURSE NUMBER - COURSE NAME MATH 361 - Linear Algebra

Created by: Daniel Gagliardi
Updated by: Daniel Gagliardi

Canino School of Engineering Technology
Department: Mathematics
Semester/Year: Fall 2018
A. TITLE: Linear algebra
B. COURSE NUMBER: MATH 361
C. CREDIT HOURS: (Hours of Lecture, Laboratory, Recitation, Tutorial, Activity)
\# Credit Hours: 3
\# Lecture Hours: 3 per week
\# Lab Hours: per week
Other: per week
Course Length: 15 Weeks
D. WRITING INTENSIVE COURSE: Yes $\square$ No $\boxtimes$
E. GER CATEGORY: None: $\square$ Yes: GER 1 Mathematics

If course satisfies more than one: GER
F. $\quad$ SEMESTER(S) OFFERED: Fall $\boxtimes$ Spring $\square$ Fall \& Spring $\square$

## G. COURSE DESCRIPTION:

This course is an introduction to the theory of finite dimensional abstract vector spaces and linear transformations. Topics include: systems of linear equations, matrices, matrix algebra, determinants and inverses, linear combinations and linear independence, abstract vector spaces, change of basis and coordinates, inner product spaces, orthonormal bases. We also consider linear transformations, isomorphisms, matrix representation of linear maps, eigenvalues and eigenvectors, diagonalization and similarity. The applications include computer graphics, Markov chains, chemistry, linear regression, network flow, electrical circuits, and differential equations.

## H. PRE-REQUISITES: None $\square$ Yes $\boxtimes$ If yes, list below:

Calculus II (MATH 162) or permission of the instructor
I. STUDENT LEARNING OUTCOMES: (see key below)

By the end of this course, the student will be able to:

| Course Student Learning Outcome | Program Student Learning <br> LSLOI | Gutcome <br> [If Applicable] | ISLO \& SUBSETS |
| :--- | :--- | :--- | :--- |
| Analyze and Solve systems of linear <br> equations using augmented matrices |  |  | QTR |
| b. Develop an understanding of the algebra <br> of matrices in order to solve applied and <br> theoretical problems using inverses of <br> matrices, determinants and other algebraic <br> operations. |  | 3-Found Skills |  |
| Analyze linear combinations of vectors in <br> Rn and identify sets of vectors that are <br> linearly independent |  | Q-Found Skills |  |
| Determine if a set of vectors is a vector <br> space, a subspace, or a basis for a vector <br> space |  | Q-Found Skills |  |
| Compute eigenvalues and eigenvectors, <br> determine if a matrix is diagonalizable, and <br> solve systems of linear ordinary differential <br> equations |  | Q-Found Skills |  |


| KEY | Institutional Student Learning Outcomes [ISLO 1-5] |
| :---: | :--- |
| ISLO <br> $\#$ | ISLO \& Subsets |
| $\mathbf{1}$ | Communication Skills <br> Oral [O], Written [W] |
| $\mathbf{2}$ | Critical Thinking <br> Critical Analysis [CA], Inquiry \& Analysis [IA], Problem <br> Solving [PS] |
| $\mathbf{3}$ | Foundational Skills <br> Information Management [IM], Quantitative Lit,/Reasoning <br> [QTR] |
| $\mathbf{4}$ | Social Responsibility <br> Ethical Reasoning [ER], Global Learning [GL], <br> Intercultural Knowledge [IK], Teamwork [T] |
| $\mathbf{5}$ | Industry, Professional, Discipline Specific Knowledge and <br> Skills |

*Include program objectives if applicable. Please consult with Program Coordinator
J. APPLIED LEARNING COMPONENT: $\quad$ Yes $\square$ No $\boxtimes$

If YES, select one or more of the following categories:

| $\square$ Classroom/Lab | $\square$ Civic Engagement |
| :--- | :--- |
| $\square$ Internship | $\square$ Creative Works/Senior Project |
| $\square$ Clinical Placement | $\square$ Research |
| $\square$ Practicum | $\square$ Entrepreneurship |
| $\square$ Service Learning | (program, class, project) |
| $\square$ Community Service |  |

## K. TEXTS:

Introduction to Linear Algebra with Applications, Defranza/Gagliardi, Waveland Press, First Edition, (2014).

## L. REFERENCES:

None
M. EQUIPMENT: None $\square$ Needed: A computer algebra system (such as Maple) will be used when appropriate.
N. GRADING METHOD: A-F
O. SUGGESTED MEASUREMENT CRITERIA/METHODS:

- Quizzes
- Exams
- Projects
- Homework
- Participation


## P. DETAILED COURSE OUTLINE:

I. Systems of Linear Equations and Matrices

1. Systems of linear equations
2. Matrices and elementary row operations
3. Matrix Algebra
4. The inverse of a square matrix
5. Determinants
II. Linear Combinations and Linear Independence
6. Vectors in Euclidean space
7. Linear Combinations
8. Linear Independence
III. Abstract Vector Spaces
9. Definition of a vector space
10. Subspaces
11. Basis and dimension
12. Coordinates and change of basis
IV. Linear Transformations
13. Linear transformations
14. The null space and range of a linear transformation
15. Isomorphisms
16. Matrix representation of linear transformations
17. Similarity
V. Eigenvalues and Eigenvectors
18. Eigenvalues and eigenvectors
19. Diagonalization
20. Diagonalize of Symmetric Matrices
VI. Inner product spaces (Optional)
21. The dot product on Euclidean spaces
22. Inner product spaces
23. Orthonormal bases and the Gram-Schmidt process
24. Orthogonal Complements
Q. LABORATORY OUTLINE: None $\boxtimes$ Yes $\square$
