MASTER SYLLABUS

MATH 362– Data Analysis

Created by: Kevin McAdoo

Updated by:

Canino School of Engineering Technology

Mathematics

Spring 2020
A. **TITLE**: Data Analysis

B. **COURSE NUMBER**: Math 362

C. **CREDIT HOURS**: (Hours of Lecture, Laboratory, Recitation, Tutorial, Activity)

 # Credit Hours: 4
 # Lecture Hours: 4 per week
 # Lab Hours: 0 per week
 Other: 0 per week

 Course Length: 14 weeks

D. **WRITING INTENSIVE COURSE**: Yes ☒ No ☐

E. **GER CATEGORY**:
 None: ☒ Yes: ☐
 If course satisfies more than one:

F. **SEMESTER(S) OFFERED**: Fall ☐ Spring ☒ Fall & Spring ☐

G. **COURSE DESCRIPTION**:

 This course is an introduction to data analysis. Software will be used to analyze and interpret data throughout the course. Included topics are multiple regression, data modeling, along with an introduction to different distributions such as Gamma and Beta distributions.

H. **PRE-REQUISITES**: None ☐ Yes ☒ If yes, list below:

 Math 141 Statistics, Math 361 Linear Algebra

 CO-REQUISITES:
 None ☒ Yes ☐ If yes, list below:
I. **STUDENT LEARNING OUTCOMES:** *(see key below)*

By the end of this course, the student will be able to:

<table>
<thead>
<tr>
<th>Course Student Learning Outcome [SLO]</th>
<th>Program Student Learning Outcome [PSLO]</th>
<th>GER [If Applicable]</th>
<th>ISLO & SUBSETS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analyze data and interpret results using a variety of methods, such as multiple regression</td>
<td></td>
<td>3-Found Skills</td>
<td>QTR</td>
</tr>
<tr>
<td>Use software to analyze data and create graphics, such as a scatter plot matrix</td>
<td></td>
<td>3-Found Skills</td>
<td>QTR</td>
</tr>
<tr>
<td>Compute mean and variance for various distributions such as Gamma and Beta distributions</td>
<td></td>
<td>3-Found Skills</td>
<td>QTR</td>
</tr>
<tr>
<td>Identify which distribution is best to use for a given data set</td>
<td></td>
<td>3-Found Skills</td>
<td>QTR</td>
</tr>
<tr>
<td>Write a technical paper to show the results and make a conclusion for the data</td>
<td></td>
<td>3-Found Skills</td>
<td>QTR</td>
</tr>
</tbody>
</table>

KEY

<table>
<thead>
<tr>
<th>Institutional Student Learning Outcomes [ISLO 1 – 5]</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISLO #</td>
</tr>
</tbody>
</table>
| 1 | Communication Skills
Oral [O], Written [W] |
| 2 | Critical Thinking
Critical Analysis [CA], Inquiry & Analysis [IA], Problem Solving [PS] |
| 3 | Foundational Skills
Information Management [IM], Quantitative Lit./Reasoning [QTR] |
| 4 | Social Responsibility
Ethical Reasoning [ER], Global Learning [GL], Intercultural Knowledge [IK], Teamwork [T] |
| 5 | Industry, Professional, Discipline Specific Knowledge and Skills |
J. **APPLIED LEARNING COMPONENT:** Yes ☒ No

If YES, select one or more of the following categories:

- Classroom/Lab
- Internship
- Clinical Placement
- Practicum
- Service Learning
- Community Service
- Civic Engagement
- Creative Works/Senior Project
- Research
- Entrepreneurship

(type, program, class, project)

K. **TEXTS:**

L. **REFERENCES:**

M. **EQUIPMENT:** None ☐ Needed: Computer Lab

N. **GRADING METHOD:** A-F

O. **SUGGESTED MEASUREMENT CRITERIA/METHODS:**

- Homework
- Quizzes
- Tests
- Projects

P. **DETAILED COURSE OUTLINE:**

I. Introduction to Statistical Programming
 - A. Excel
 - B. SPSS
 - C. R

II. Binomial Distribution
 - A. How Binomial data works
 - B. Distribution Formula, mean formula, and variance formula
 - C. Real world data that is Binomial – and using software to calculate statistics

II. Normal/Gaussian Distribution
 - A. How the data is distributed and why it is Gaussian
 - B. Distribution Formula, mean formula, and variance formula
 - C. Real world data that is Gaussian – and using software to calculate statistics

II. Poisson Distribution
 - A. What data relates to Poisson
 - B. Distribution Formula, mean formula, and variance formula
C. Real world data that is Poisson – and using software to calculate statistics

II. Gamma Distribution
 A. Data that is Gamma – (log distribution)
 B. Distribution Formula, mean formula, and variance formula
 C. Real world data that is Gamma – and using software to calculate statistics

III. Modeling
 A. Regression – single and multiple
 B. How to pick a distribution based on data
 C. Modeling with real world data

VI. Real World Applications
 A. Use multiple regression to make decisions on a data set
 B. Create a model based on multiple regression
 C. Given a data set, select a distribution and then model the data.
 D. Conclusions on the effectiveness of models that have been running for a long time

Q. **LABORATORY OUTLINE**: None ☒ Yes ☐