STATE UNIVERSITY OF NEW YORK COLLEGE OF TECHNOLOGY CANTON, NEW YORK

MASTER SYLLABUS

MATH 364 - DIFFERENTIAL EQUATIONS

Created by: Jiayuan Lin, Daniel Gagliardi, Patrick Casselman Updated by: Patrick Casselman

> CANINO SCHOOL OF ENGINEERING TECHNOLOGY MATHEMATICS DEPARTMENT Fall 2018

A. TITLE: Differential Equations

B. COURSE NUMBER: MATH 364

C. CREDIT HOURS: (Hours of Lecture, Laboratory, Recitation, Tutorial, Activity)

Credit Hours: 4
Lecture Hours: 4 per week
Lab Hours: per week
Other: per week

Course Length: 15 Weeks

D. <u>WRITING INTENSIVE COURSE</u>: N/A

E. <u>GER CATEGORY</u>: 1

F. <u>SEMESTER(S) OFFERED</u>: Spring and fall semesters

G. <u>COURSE DESCRIPTION</u>: A course in Ordinary Differential Equations. Topics include: First-order differential equations, higher-order differential equations with constant and variable coefficients, applications of first and second-order linear equations, Laplace transforms, systems of linear differential equations and numerical methods for ordinary differential equations (optional).

H. <u>PRE-REQUISITES/CO-REQUISITES</u>:

a. Pre-requisite(s): Calculus II (MATH 162) with a grade of C or better or permission of instructor.b. Co-requisite(s): N/A

c. Pre- or co-requisite(s): N/A

I. <u>STUDENT LEARNING OUTCOMES</u>:

<u>Course Student Learning</u> <u>Outcome [SLO]</u>	<u>PSLO</u>	GER	<u>ISLO</u>
a. Verify implicit and explicit solutions of ordinary differential equations (ODE's)	N/A	1	3. Quantitative Lit,/Reasoning [QTR]
b. Solve first-order ODE's and IVP's using separation of variables, integrating factors, substitutions, or numerical analysis	N/A	1	3. Quantitative Lit,/Reasoning [QTR]
c. Find the general solution of second-order ODE or higher order homogeneous or nonhomogeneous ODE's	N/A	1	3. Quantitative Lit,/Reasoning [QTR]
d. Solve ODE's using the Laplace transform	N/A	1	3. Quantitative Lit,/Reasoning [QTR]
e. Solve systems of ODE's	N/A	1	3. Quantitative Lit,/Reasoning [QTR]

KEY	Institutional Student Learning Outcomes [ISLO		
	1-5		
ISLO	ISLO & Subsets		
#			
1	Communication Skills		
	Oral [O], Written [W]		
2	Critical Thinking		
	Critical Analysis [CA], Inquiry & Analysis [IA],		
	Problem Solving [PS]		
3	Foundational Skills		
	Information Management [IM], Quantitative		
	Lit,/Reasoning [QTR]		
4	Social Responsibility		
	Ethical Reasoning [ER], Global Learning [GL],		
	Intercultural Knowledge [IK], Teamwork [T]		
5	Industry, Professional, Discipline Specific		
	Knowledge and Skills		

J. APPLIED LEARNING COMPONENT: Yes_____

K. % <u>TEXTS:</u> Ordinary Differentil Equations from Calculus to Dynamical Systems, V.W. Noonburg, Mathematical Association of America (Incorporated), 2014

No x

- L. % <u>REFERENCES</u>: N/A
- M. % EQUIPMENT: N/A
- N. % GRADING METHOD: A-F

O. % <u>SUGGESTED MEASUREMENT CRITERIA/METHODS</u>: Instructors may use a combination of:

- Exams
- Assignments
- Participation

P. <u>DETAILED COURSE OUTLINE</u>:

- I. Introduction to ordinary differential equations (ODE's)
 - A. Multivariable functions and partial derivatives
 - B. Classification of ODE's
 - C. Verification of solutions
 - D. Explicit and implicit solutions
 - E. Initial value problems
- II. First Order ODE's
 - A. Separable variables
 - B. Linear equations
 - C. Exact equations
 - D. Homogeneous ODE
 - E. Bernoulli Equations
 - F. Other miscellaneous substitutions (optional)
 - G. Geometric characterization of solutions (direction fields)
 - H. Numeric methods (Euler's method)

- I. Applications of first order ODE
- III. Second order ODE's
 - A. Vectors in the plane
 - B. Vectors in 3-space
 - C. Linear dependence and independence
 - D. Using the Wronskian
 - E. Finding a second solution using reduction of order
 - F. Homogeneous Second order linear ODE with constant coefficients
 - G. Nonhomogeneous Second order linear ODE
 - a. Method of undetermined coefficients
 - b. Variation of parameter
 - H. Solutions by power series (optional)
 - I. Applications of second order ODE's
- IV. Higher order ODE's (Optional)
 - A. Use determinant to determine linear independence or dependence
 - B. Solutions of higher order linear ODE
 - C. Higher order linear ODE with constant coefficients
 - a. Method of undetermined coefficients
 - b. Variation of parameters
 - D. Euler equations
 - E. Solve ODE by power series
 - a. Series solutions about ordinary points
 - b. Series solutions about singular points
- V. The Laplace Transform
 - A. Laplace transform
 - B. Inverse transform
 - C. Translation theorems and the unit step function
 - D. Transforms of derivatives, integrals, piecewise, and periodic functions
 - E. Solutions of differential equations using the Laplace transform
 - F. The convolution of two functions and the transform of a convolution (optional)

VI. Systems of Differential Equations

A. Solutions of homogeneous linear systems using Eigenvalues and eigenvectors

Q. <u>LABORATORY OUTLINE</u>: N/A